Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T03:06:11.608Z Has data issue: false hasContentIssue false

Heat Capacities of Kaolinite From 7 to 380 K and of DMSO-Intercalated Kaolinite from 20 to 310 K. The Entropy of Kaolinite Al2Si2O5(OH)4

Published online by Cambridge University Press:  02 April 2024

Richard A. Robie
Affiliation:
MS 959, National Center U.S. Geological Survey, Reston, Virginia 22092
Bruce S. Hemingway
Affiliation:
MS 959, National Center U.S. Geological Survey, Reston, Virginia 22092
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The heat capacities of kaolinite (7 to 380 K) and of dimethyl sulfoxide (DMSO) intercalated kaolinite (20 to 310 K) were measured by adiabatically shielded calorimetry. The third law entropy of kaolinite, S298, is 200.9 ± 0.5 J·mol−1K−1.

The “melting point” of the DMSO in the intercalate, 288.0 ± 0.2 K, is 3.7 K lower than that of pure DMSO, 291.67 K. The heat capacity of DMSO in the intercalate above 290 K is approximately 5.2 J·mol−1·K−1 smaller than that of pure liquid DMSO at the same temperature.

Type
Research Article
Copyright
Copyright © 1991, The Clay Minerals Society

References

Clever, H. L. and Westrum, E F Jr, 1970 Dimethyl sulfoxide and dimethyl sulfone. Heat capacities, enthalpies of fusion, and thermodynamic properties J. Phys. Chem. 74 13091317.CrossRefGoogle Scholar
Dugdale, J. S., Morrison, J. A. and Patterson, D., 1954 The effect of particle size on the heat capacity of titanium dioxide Proc. Roy. Soc. London Ser. A A224 228235.Google Scholar
Ginnings, D. C. and Furukawa, G. T., 1953 Heat capacity standards for the range 14–1200° K J. Amer. Chem. Soc. 75 522527.CrossRefGoogle Scholar
Hemingway, B. S., Robie, R. A., Fisher, J. R. and Wilson, W. H., 1977 The heat capacities of gibbsite Al(OH)3, between 13 and 480 K and magnesite, MgCO3, between 13 and 380 K and their standard entropies at 298.15 K, and the heat capacities of calorimetry conference benzoic acid between 12 and 316 K J. Research, U.S. Geol. Surv. 6 797806.Google Scholar
Hemingway, B. S., Robie, R. A. and Kittrick, J. A., 1978 Revised values for the Gibbs free energy of formation of [Al(OH4)aq ], diaspore, boehmite and bayerite at 298.15 K and 1 bar, the thermodynamic properties of kaolinite to 800 K and 1 bar, and the heats of solution of several gibbsite samples Geochim. Cosmochim. Acta 42 15331543.CrossRefGoogle Scholar
Hemingway, B. S., Robie, R. A. and Apps, J. A., 1991 Revised values for the thermodynamic properties of boehmite, AlO(OH), and comments on the relative stabilities of the aluminum hydroxide and the oxyhydroxide phases Amer. Mineral. 76 445457.Google Scholar
Hemingway, B. S., Sposito, G. and Sposito, G., 1989 Inorganic aluminum bearing solid phases The Environmental Chemistry of Aluminum Boca Raton, Florida CRC Press 5586.Google Scholar
Johnston, C. T., Sposito, G., Bocian, D. F. and Birge, R. R., 1984 Vibrational spectroscopic study of the interlamellar kaolinite-dimethyl sulfoxide complex J. Phys. Chem. 88 59595964.CrossRefGoogle Scholar
King, E. G. and Weller, W. W. (1961) Low-temperature heat capacities and entropies at 298.15°K of diaspore, kaolinite, dickite and halloysite: U.S. Bur. Mines Rept. Invest. 5810, 6 p.Google Scholar
Lipsicas, M., Raythatha, R., Giese, R. F. and Constanzo, P. M., 1986 Molecular motions, surface interactions, and stacking disorder in kaolinite intercalates Clays & Clay Minerals 34 635644.CrossRefGoogle Scholar
Nagelschmidt, G., Donnelly, H. F. and Morcom, A. J., 1949 On the occurrence of anatase in sedimentary kaolin Mineral. Mag. 28 492495.Google Scholar
Robie, R. A., Ulmer, G. C. and Barnes, H. L., 1987 Calorimetry Hydrothermal Experimental Techniques New York Wiley-Interscience 389422.Google Scholar
Robie, R. A. and Hemingway, B. S. (1972) Calorimeters for heat of solution and low-temperature heat capacity measurements: U.S. Geol. Surv. Prof. Pap. 755, 32 p.Google Scholar
Robie, R. A., Hemingway, B. S. and Wilson, W. H., 1976 The heat capacities of calorimetry conference copper, muscovite KAl2[AlSi3]O10(OH)2, pyrophyllite Al2Si4O10(OH)2, and illite KAl4[Si7Al)O20(OH)4 between 15 and 375 K and their standard entropies at 298.15°K J. Research, U.S. Geol. Surv. 4 631644.Google Scholar
Shomate, C. H., 1947 Heat capacities at low temperatures of titanium dioxide (rutile and anatase) J. Am. Chem. Soc. 69 218219.CrossRefGoogle Scholar
Thomas, J. M., Whittingham, M. S. and Jacobson, A. J., 1982 Sheet silicate intercalates, new agents for unusual chemical conversions Intercalation Chemistry New York Academic Press 5599.CrossRefGoogle Scholar
Thompson, J. G. and Cuff, C., 1985 Crystal structure of kaolinite: dimethyl sulfoxide intercalate Clays & Clay Minerals 33 490500.CrossRefGoogle Scholar
van Olphen, H. and Fripiat, J. J., 1979 Data Handbook for Clays and Other Non-Metallic Materials Oxford Pergamon Press.Google Scholar