Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T18:44:09.694Z Has data issue: false hasContentIssue false

Geochemistry and Mineralogy of a Modern Buserite Deposit from a Hot Spring in Hokkaido, Japan

Published online by Cambridge University Press:  28 February 2024

Akira Usui
Affiliation:
Department of Marine Geology, Geological Survey of Japan, 1-1-3 Higashi, Tsukuba, Ibaraki, Japan 305
Naoki Mita
Affiliation:
Department of Geochemistry, Geological Survey of Japan, 1-1-3 Higashi, Tsukuba, Ibaraki, Japan 305
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The hot spring water discharging from a flank of an active volcano is precipitating unique monomineralic manganese deposits over volcanic terrain. The major and trace element chemistry, XRD mineralogy, DTA, and SEM observations indicate that the deposits consist of 10 Å phyllomanganate (buserite) accommodating inter-layer Ca and Mg with negligible amounts of detrital minerals. Other metallic elements can be accommodated by buserite, but concentrations are negligible ranging less than 10 ppm to 500 ppm. Abundance and pattern of REE (less than 100 ppm in total) are similar to those from hydrothermal manganese deposits. The buserite is enriched in Ca and Mg but depleted in Na in comparison with those in the spring water. The distribution coefficients for Ca, Mg and Na between the buserite and the host water were calculated assuming an ion-exchange equilibrium in the Yuno-Taki Fails, which proved applicable to other manganese deposits from surficial environments on land and oceans.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

References

Alt, J. C., Lonsdale, P., Haymon, R., and Muehlenbachs, K. 1987 . Hydrothermal sulfide and oxide deposits on seamounts near 21°N, East Pacific Rise. Geol. Soc. Amer. Bull. 98: 157168.2.0.CO;2>CrossRefGoogle Scholar
Arrhenius, G., and Tsai, A. G. 1981 . Structure, phase transformation and prebiotic catalysis in marine manganate minerals. SIO Ref. Ser. 81: 119.Google Scholar
Bish, D. L., and Post, E. J. 1989 . Thermal behavior of complex, tunnel-structure manganese oxides: Amer. Mineral. 74: 177186.Google Scholar
Bolton, B. R., Both, R., Exon, N. F., Hamilton, T. F., Ostwald, J., and Smith, J. D. 1988 . Geochemistry and mineralogy of seafloor hydrothermal and hydrogenetic Mn oxide deposits from the Manus basin and Bismarck archipelago region of the southwest Pacific ocean. Mar. Geol. 85: 6587.CrossRefGoogle Scholar
Brown, A. C., 1964. Geochemistry of the Dawson settlement bog manganese deposits, New Brunswick. Geol. Surv. Canada Paper 63–42, p. 26.CrossRefGoogle Scholar
Burns, R. G., Burns, V. M., and Stockman, H. W. 1983 . A review of the todorokite-buserite problem: Implication to the mineralogy of marine manganese nodules. Amer. Mineral. 68: 972980.Google Scholar
Buser, W., Graf, P., and Feitknecht, W. 1954 . Beitrag zur Kenntnis der Mangan(II)-manganit und des δ-MnO2. Helv. Chim. Acta 37: 23222333.CrossRefGoogle Scholar
Chester, R., and Hughes, M. J. 1976 . A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and dsorbed trace elements from pelagic sediments. Chem. Geol. 2: 249262.CrossRefGoogle Scholar
Chukhrov, F. V., Gorshkov, A. I., Drits, V. A., and Dikov, Y. P. 1985 . Structural varieties of todorokite. Int'l Geol. Rev. 27: 14811491.CrossRefGoogle Scholar
Corliss, J. B., Lyle, M., Dymond, J., and Crane, K. 1978 . The geochemistry of hydrothermal mounds near the Galapagos rift. Earth Planet. Sci. Lett. 40: 1224.CrossRefGoogle Scholar
Crane, S. E., 1981. Structural chemistry of marine manganate minerals: Ph.D. thesis. Scripps Inst. Oceanography, La Jolla, 296 pp.Google Scholar
Cronan, D. S., Glasby, G. P., Moorby, S. A., Thomson, J., Knedler, K. E., and McDougall, J. C. 1982 . A submarine hydrothermal manganese deposit from the S.W. Pacific Island Arc. Nature 298: 456458.CrossRefGoogle Scholar
Dixon, J. B., and Skinner, H. C. W. Manganese minerals in surface environments. In Biomineralization Processes of Iron and Manganese—Modern and Ancient Environments. Skinner, H. C. W., and Fitzpatrick, R. W., 1992 eds. Cremlingen: CATENA Verlag, 3150.Google Scholar
Evanson, N. M., Hamilton, P. J., and O'Nions, R. K. 1978 . Rare earth abundances in chondritic meteorites. Geochim. Cosmochim. Acta 42: 11991212.CrossRefGoogle Scholar
Flanagan, F. J., and Gotterfried, D. 1980 . USGS Rock Standards, III: Manganese-nodule reference samples USGS-Nod-A-1 and USGS-Nod-P-1. USGS Prof. Paper 1155, p. 39.Google Scholar
Giovanoli, R., 1980. On natural and synthetic manganese nodules. In Geology and Geochemistry of Manganese I. Varentsov, I. M., and Grasselly, G Y., eds. Stuttgart: Schweizerbart'sche Verlag, 159202.Google Scholar
Giovanoli, R., 1985. Layer structures and tunnel structures in manganates. Chem. Erde 44: 227244.Google Scholar
Giovanoli, R., and Brütsch, R. L'echange des ions de transition par le manganate-10Å et le manganate-7Å. In La Genèse des Nodules de Manganèse. Lalou, C., 1979 ed. Paris: Cent. Natl. Rech. Sci., 305313.Google Scholar
Glasby, G. P., Gwozdz, R., Kunzendorf, H., Friedrich, G., and Thijssen, T. 1987 . The distribution of rare earth and minor elements in manganese nodules and sediments from the equatorial and S.W. Pacific. Lithos 20: 97113.CrossRefGoogle Scholar
Golden, D. C., Chen, C. C., and Dixon, J. B. 1986 . Synthesis of Todorokite. Science 231: 717719.CrossRefGoogle ScholarPubMed
Govindaraju, K., 1989. 1989 compilation of working values and sample description for 272 geostandards. Geostandards Newsletter 13: 1213.CrossRefGoogle Scholar
Gross, M. G., 1987. Oceanography—A View of the Earth. New Jersey: Prentice-Hall Inc., 115116.Google Scholar
Hariya, Y., 1985. Geochemistry of the hot lake deposits at Oyunuma, Japan, and special reference to recent sulfide deposits around deep-sea vents in the ocean. Proc. 17th OTC, Houston, Texas, 6165.CrossRefGoogle Scholar
Hariya, Y., Miura, H., and Mita, N. Manganese and manganiferous deposits of the Northern Hokkaido. In Mineral Deposits of Japan and the Philippines. 29th Int'l Geol. Congr. Field Trip Guidebook 6. Urabe, T., and Aoki, M., 1992 eds., 116.Google Scholar
Hein, J. R., Fleishman, C. L., Morgenstein, L. A., Bloomer, S. H., and Stern, R. J. 1987 . Submarine Ferromanganese deposits from the Mariana and Volcano volcanic arcs, West Pacific. U.S.G.S. Open File Rept. 87–281: 19.Google Scholar
Kimura, M., Uyeda, S., Kato, Y., Tanaka, T., Yamano, M., Gamo, T., Sakai, H., Kato, S., Izawa, E., and Oomori, T. 1988 . Active hydrothermal mounds in the Okinawa Trough backarc basin, Japan. Tectonophysics. 145: 319324.CrossRefGoogle Scholar
Klug, H. P., and Alexander, L. E. 1954 . X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: John Wiley & Sons, Inc., 491511.Google Scholar
Krom, M. D., and Berner, R. A. 1983 . A rapid method for determination of organic and carbonate carbon in geological samples. J. Sed. Petrol. 53: 600603.CrossRefGoogle Scholar
Kunzendorf, H., Glasby, G. P., Stoffer, P., and Plüger, W. L. 1993 . The distribution of rare earth and minor elements in manganese nodules, micronodules and sediments along an east-west transect in the southern Pacific. Lithos 30: 4556.CrossRefGoogle Scholar
Lalou, C., Bricht, E., Jehanno, C., and Perez-Leclaire, H. 1983 . Hydrothermal manganese oxide deposits from the Galapagos mounds, DSDP Leg 70, hole 509B and “Alvin” dives 729 and 721. Earth Planet. Sci. Lett. 63: 6375.CrossRefGoogle Scholar
Lonsdale, P., Burns, V. M., and Fisk, M. 1980 . Nodules of hydrothermal birnessite in the caldera of a young seamount. Jour. Geol. 88: 611618.CrossRefGoogle Scholar
McKenzie, R. M., 1971. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineral. Mag. 28: 493503.CrossRefGoogle Scholar
Mita, N., Maruyama, A., Usui, A., Higashihara, T., and Hariya, Y. 1994 . A growing deposit of hydrous manganese oxide produced by microbial mediation at a hot spring, Japan. Geochemical Journal 28: 7180.CrossRefGoogle Scholar
Mitani, K., Fujiwara, T., and Ishiyama, S. 1964 . Geological Map of Kamiashoro with Explanatory Text (Kushiro No. 6): Geol. Surv. Hokkaido, 1 sheet [in Japanese].Google Scholar
Miura, H., and Hariya, Y. 1984 . Todorokite with long spacing and structure of manganese dioxide minerals. Jour. Mineral. Soc. Japan 16: 301308 [in Japanese].Google Scholar
Moore, W. S., and Vogt, P. R. 1976 . Hydrothermal manganese crusts from two sites near the Galapagos spreading axis. Earth Planet. Sci. Lett. 29: 349356.CrossRefGoogle Scholar
Mustoe, G. E., 1981. Bacterial oxidation of manganese and iron in a modern cold spring. Geol. Soc. Amer. Bull. Part I 92: 147153.2.0.CO;2>CrossRefGoogle Scholar
Paterson, E., Bunch, J. L., and Clark, D. R. 1986a . Cation exchange in synthetic manganates: I. Alkylammounium exchange in a synthetic phyllomanganate. Clay Miner. 21: 949955.CrossRefGoogle Scholar
Paterson, E., Clark, D. R., Russell, J. D., and Swaffield, R. 1986b . Cation exchange in synthetic manganates: II. The structure of an alkylammonium-saturated phyllomanganate. Clay Miner. 21: 957964.CrossRefGoogle Scholar
Post, J. E., 1992. Crystal structures of manganese oxide minerals. In Biomineralization Processes of Iron and Manganese—Modern and Ancient Environments. Skinner, H. C. W., and Fitzpatrick, R. W., eds. Cremlingen: CATENA Verlag, 5173.Google Scholar
Post, J. E., and Bish, D. L. 1988 . Rietveld refinement of the todorokite structure. Amer. Miner. 73: 861869.Google Scholar
Potter, R. M., and Rossman, G. R. 1979a . Mineralogy of manganese dendrites and coatings. Amer. Miner. 64: 12191226.Google Scholar
Potter, R. M., and Rossman, G. R. 1979b . The tetravalent manganese oxides: identification, hydration, and structural relationships by infrared spectroscopy. Amer. Miner. 64: 11991218.Google Scholar
Raymond, R. Jr., Guthrie, G. D., Bish, D. L., Reneau, S. L., and Chipera, S. J. Biomineralization of manganese in rock varnish. In Biomineralization Processes of Iron and Manganese—Modern and Ancient Environments. Skinner, H. C. W., and Fitzpatrick, R. W., 1992 eds. Cremlingen: CATENA Verlag, 321335.Google Scholar
Robinson, G. D., 1993. Major-element chemistry and micromorphology of Mn-oxide coatings on stream alluvium. Appl. Geochem. 8: 633642.CrossRefGoogle Scholar
Robbins, E. I., D'Agostino, J. P., Ostwald, J., Fanning, D. S., Carter, V., and Van Hoven, R. L. Manganese nodules and microbial oxidation of manganese in the Huntley Meadows wetland, Virginia, USA. In Biomineralization Processes of Iron and Manganese—Modern and Ancient Environments. Skinner, H. C. W., and Fitzpatrick, R. W., 1992 eds. Cremlingen: CATENA Verlag, 179202.Google Scholar
Sato, Y., 1991. Formation of manganese and iron oxides and behavior of associated metal elements: Ph.D. thesis. Tokai University, Shimizu, Japan, 162 pp. [in Japanese].Google Scholar
Satoh, H., 1964. Geological Map of Akanko with Explanatory Text (Kushiro No. 7): Geol. Surv. Hokkaido, 1 sheet.Google Scholar
Suzuki, R., and Sakai, S. 1991 . Manganese deposits formed from hot-spring waters: Chikyukagaku (Geochemistry) 24: 5564 [in Japanese].Google Scholar
Takematsu, N., Kusakabe, H., Sato, Y., and Okabe, S. 1988 . Todorokite formation in seawater by microbial mediation. Jour. Oceanogr. Soc. Japan 44: 235242.Google Scholar
Thompson, G., Mottl, M. J., and Rona, P. A. 1985 . Morphology, mineralogy and chemistry of hydrothermal deposits from the tag area, 26°N mid-Atlantic ridge. Chem. Geol. 49: 243257.CrossRefGoogle Scholar
Turner, S., Siegel, M. D., and Buseck, P. R. 1982 . Structural features of todorokite intergrowths in manganese nodules. Nature 296: 841842.CrossRefGoogle Scholar
Umemoto, S., Matsumura, A., Yamaya, M., and Ishibashi, K. 1956 . Report of survey of sulfur, iron and manganese deposits around Mt. Me-Akan. Data Report of Underground Mineral Resources in Hokkaido 24: 2135 [in Japanese].Google Scholar
Usui, A., 1979. Nickel and copper accumulation as essential elements in 10 Å manganite of deep-sea manganese nodules. Nature 279: 411413.CrossRefGoogle ScholarPubMed
Usui, A., and Nishimura, A. 1992 . Submersible observation of hydrothermal manganese deposits on the Kaikata Seamount, Izu-Ogasawara (Bonin) Arc. Mar. Geol. 106: 203216.CrossRefGoogle Scholar
Usui, A., Mellin, T. A., Nohara, M., and Yuasa, M. 1989 . Structural stability of marine 10Å manganates from the Ogasawara (Bonin) Arc. Implication for low-temperature hydrothermal activity. Mar. Geol. 86: 4156.CrossRefGoogle Scholar
Usui, A., Yuasa, M., Yokota, M., Nishimura, A., and Murakami, F. 1986 . Submarine hydrothermal manganese deposits from the Ogasawara (Bonin) Arc, off the Japan Islands. Mar. Geol. 73: 311322.CrossRefGoogle Scholar
Wada, H., Seirayasakol, A., Kimura, M., and Takai, Y. 1978 . The process of manganese deposition in paddy soils (I) A hypothesis and its verification. Soil Sci. Plant Nutr. 24: 5562.CrossRefGoogle Scholar
Yokoyama, I., Katsui, Y., Ebara, S., and Koide, K. 1976 . Mt. Me-Akan Dake. Report on volcanoes in Hokkaido, 138 pp. [in Japanese].Google Scholar
Yoshimura, T., 1952. Manganese Deposits of Japan. I. Kyushu: Shuko Publ. Co., 567 pp. [in Japanese].Google Scholar