Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T17:06:41.667Z Has data issue: false hasContentIssue false

FTIR and XRD Investigations of Tetracycline Intercalation in Smectites

Published online by Cambridge University Press:  01 January 2024

Zhaohui Li*
Affiliation:
Geosciences Department, University of Wisconsin — Parkside, Kenosha, WI 53141-2000, USA Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan Faculty of Earth Sciences, China University of Geosciences, Wuhan, Hubei 430074, China
Vera M. Kolb
Affiliation:
Chemistry Department, University of Wisconsin — Parkside, Kenosha, WI 53141-2000, USA
Wei-Teh Jiang
Affiliation:
Department of Earth Sciences, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
Hanlie Hong
Affiliation:
Faculty of Earth Sciences, China University of Geosciences, Wuhan, Hubei 430074, China
*
* E-mail address of corresponding author: li@uwp.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Due to swelling, smectite minerals are capable of intercalating many organic molecules in their interlayer space. Tetracycline (TC) is a group of antibiotics used extensively in human and veterinary medicine. The great aqueous solubility and long environmental half life of TC mean that the study of interactions between swelling clay minerals and TC are of great importance in TC transport and retention in subsurface soils. In the present study, the intercalation of TC molecules at different levels into smectites was investigated using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The shift of the FTIR bands of amide I and II in comparison to crystalline TC suggested a strong interaction between the amide groups and the clay surfaces. The band at 1455 cm−1 remained the same after TC intercalation into SAz-1, SWy-2, and SYn-1, suggesting that complexation was not a dominant mechanism of TC uptake by these minerals. With cation exchange as the major mechanism of TC intercalation into these minerals, simultaneous removal of H+ from solution protonated the TC molecules and provided a positive charge to interact with negatively charged mineral surfaces even in neutral to slightly alkaline conditions. The increase in interlayer distance after intercalation by TC, as revealed by XRD, suggested a tilted orientation of the intercalated TC molecules in both twisted conformation in acidic condition and extended conformation in alkaline condition.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2010

References

Al-Rifai, J.H. Gabelish, C.L. and Scha¨fer, A.I., 2007 Occurrence of pharmaceutically active and non-steroidal estrogenic compounds in three different wastewater recycling schemes in Australia Chemosphere 69 803815 10.1016/j.chemosphere.2007.04.069.CrossRefGoogle ScholarPubMed
Batt, A.L. and Aga, D.S., 2005 Simultaneous analysis of multiple classes of antibiotics by ion trap LC/MS/MS for assessing surface water and groundwater contamination Analytical Chemistry 77 29402947 10.1021/ac048512+.CrossRefGoogle ScholarPubMed
Blackwell, P.A. Kay, P. and Boxall, A.B.A., 2007 The dissipation and transport of veterinary antibiotics in a sandy loam soil Chemosphere 67 292299 10.1016/j.chemosphere.2006.09.095.CrossRefGoogle Scholar
Borden, D. and Giese, R.F., 2001 Baseline studies of The Clay Minerals Society source clays: cation exchange capacity measurements by the ammonia-electrode method Clays and Clay Minerals 49 444445 10.1346/CCMN.2001.0490510.CrossRefGoogle Scholar
Caminati, G. Focardi, C. Gabrielli, G. Gambinossi, F. Mecheri, B. Nocentini, M. and Puggelli, M., 2002 Spectroscopic investigation of tetracycline interaction with phospholipid Langmuir—Blodgett films Materials Science and Engineering C 22 301305 10.1016/S0928-4931(02)00217-5.CrossRefGoogle Scholar
Carballa, M. Omil, F. Lema, J.M. Llompart, M. Garcia-Jares, C. Rodriguez, I. Gomez, M. and Ternes, T., 2004 Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant Water Research 38 29182926 10.1016/j.watres.2004.03.029.CrossRefGoogle Scholar
Chang, P.-H. Li, Z. Yu, T.-L. Munkhbayer, S. Kuo, T.-H. Hung, Y.-C. Jean, J.-S. and Lin, K.-H., 2009 Sorptive removal of tetracycline from water by palygorskite Journal of Hazardous Materials 165 148155 10.1016/j.jhazmat.2008.09.113.CrossRefGoogle ScholarPubMed
Chang, P.-H. Jean, J.-S. Jiang, W.-T. and Li, Z., 2009 Mechanism of tetracycline sorption on rectorite Colloids and Surfaces A: Physicochemical and Engineering Aspects 339 9499 10.1016/j.colsurfa.2009.02.002.CrossRefGoogle Scholar
Dzigielewski, J. Hanuza, J. and Jezowska-Trzebiatowska, B., 1976 Bulletin De L Academie Polnoaise Des Sciences serie des sciences chimiques XXIV 4 307322.Google Scholar
Dogan, A.U. Dogan, M. Onal, M. Sarikaya, Y. Aburub, A. and Wurster, D.E., 2006 Baseline studies of The Clay Minerals Society Source Clays: specific surface area by the Brunauer Emmett Teller (BET) method Clays and Clay Minerals 54 6266 10.1346/CCMN.2006.0540108.CrossRefGoogle Scholar
Duarte, H.A. Carvalho, S. Paniago, E.B. and Simas, A.M., 1999 Importance of Tautomers in the chemical behavior of tetracyclines Journal of Pharmaceutical Science 88 111120 10.1021/js980181r.CrossRefGoogle Scholar
Figueroa, R.A. and Mackay, A.A., 2005 Sorption of oxytetracycline to iron oxides and oxide-rich soils Environmental Science & Technology 39 66646671 10.1021/es048044l.CrossRefGoogle ScholarPubMed
Figueroa, R.A. Leonard, A. and MacKay, A.A., 2004 Modeling tetracycline antibiotic sorption to clays Environmental Science & Technology 38 476483 10.1021/es0342087.CrossRefGoogle ScholarPubMed
Gambinossi, F. Mecheri, B. Nocentini, M. Puggelli, M. and Caminati, G., 2004 Effect of the phospholipid head group in antibiotic-phospholipid association at water—air interface Biophysical Chemistry 110 101117 10.1016/j.bpc.2004.01.008.CrossRefGoogle ScholarPubMed
Gu, C. and Karthikeyan, K.G., 2005 Interaction of tetracycline with aluminum and iron hydrous oxides Environmental Science & Technology 39 26602667 10.1021/es048603o.CrossRefGoogle ScholarPubMed
Gu, C. Karthikeyan, K. Sibley, S.D. and Pedersen, J.A., 2007 Complexation of the antibiotic tetracycline with humic acid Chemosphere 66 14941501 10.1016/j.chemosphere.2006.08.028.CrossRefGoogle ScholarPubMed
Kim, S. Eichhorn, P. Jensen, J.N. Weber, A.S. and Aga, D.S., 2005 Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process Environmental Science & Technology 39 58165823 10.1021/es050006u.CrossRefGoogle ScholarPubMed
Kolpin, D.W. Furlong, E.T. Meyer, M.T. Thurman, E.M. Zaugg, S.D. Barber, L.B. and Burton, H.T., 2002 Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance Environmental Science & Technology 36 12021211 10.1021/es011055j.CrossRefGoogle ScholarPubMed
Kulshrestha, P. Giese, RF Jr. and Aga, D.S., 2004 Investigating the molecular interactions of oxytetracycline in clay and organic matter: Insights on factors affecting its mobility in soil Environmental Science & Technology 38 40974105 10.1021/es034856q.CrossRefGoogle ScholarPubMed
Ku¨mmerer, K., 2009 Antibiotics in the aquatic environment — A review — Part I Chemosphere 75 417434 10.1016/j.chemosphere.2008.11.086.CrossRefGoogle ScholarPubMed
Lee, S.Y. and Kim, S.J., 2002 Delamination behavior of silicate layers by adsorption of cationic surfactants Journal of Colloid and Interface Science 248 231238 10.1006/jcis.2002.8222.CrossRefGoogle ScholarPubMed
Leypold, C.F. Reiher, M. Brehm, G. Schmitt, M.O. Schneider, S. Matousek, P. and Towrie, M., 2003 Tetracycline and derivatives — assignment of IR and Raman spectra via DFT calculations Physical Chemistry Chemical Physics 5 11491157 10.1039/b210522e.CrossRefGoogle Scholar
Li, Z. Chang, P.-H. Jean, J.-S. Jiang, W.-T. and Wang, C.-J., 2010 Interaction between tetracycline and smectite in aqueous solution Journal of Colloid and Interface Science 341 311319 10.1016/j.jcis.2009.09.054.CrossRefGoogle ScholarPubMed
Madejová, J. and Komadel, P., 2001 Baseline studies of The Clay Minerals Society source clays: infrared methods Clays and Clay Minerals 49 410432 10.1346/CCMN.2001.0490508.CrossRefGoogle Scholar
Mermut, A.R. and Lagaly, G., 2001 Baseline studies of The Clay Minerals Society source clays: layer-charge determination and characteristics of those minerals containing 2:1 layers Clays and Clay Minerals 49 393397 10.1346/CCMN.2001.0490506.CrossRefGoogle Scholar
Miao, X.S. Bishay, F. Chen, M. and Metcalfe, C.D., 2004 Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada Environmental Science & Technology 38 35333541 10.1021/es030653q.CrossRefGoogle ScholarPubMed
Myers, H.M. Tochon-Danguy, H.J. and Baud, C.A., 1983 IR absorption spectrophotometric analysis of the complex formed by tetracycline and synthetic hydroxyapatite Calcified Tissue International 35 745749 10.1007/BF02405117.CrossRefGoogle ScholarPubMed
Ogawa, M. Ishii, T. Miyamoto, M. and Kuroda, K., 2003 Intercalation of a cationic azobenzene into montmorillonite Applied Clay Science 22 179185 10.1016/S0169-1317(02)00157-6.CrossRefGoogle Scholar
Othersen, O.G. Beierlein, F. Lanig, H. and Clark, T., 2003 Conformations and tautomers of tetracycline Journal of Physical Chemistry B 107 1374313749 10.1021/jp0364506.CrossRefGoogle Scholar
Parolo, M.E. Savini, M.C. Vallés, J.M. Baschini, M.T. and Avena, M.J., 2008 Tetracycline adsorption on montmorillonite: pH and ionic strength effects Applied Clay Science 40 179186 10.1016/j.clay.2007.08.003.CrossRefGoogle Scholar
Porubcan, L.S. Serna, C.J. White, J.L. and Hem, S.L., 1978 Mechanism of adsorption of clindamycin and tetracycline by montmorillonite Journal of Pharmaceutical Science 67 10811087 10.1002/jps.2600670815.CrossRefGoogle ScholarPubMed
Sarmah, A.K. Meyer, M.T. and Boxall, A.B.A., 2006 A global perspective in the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment Chemosphere 65 725759 10.1016/j.chemosphere.2006.03.026.CrossRefGoogle ScholarPubMed
Sassman, S. and Lee, L., 2005 Sorption of three tetracyclines by several soils: Assessing the role of pH and cation exchange Environmental Science & Technology 39 74527459 10.1021/es0480217.CrossRefGoogle ScholarPubMed
Schlecht, K.D. Dix, R.B. and Tamul, M.J., 1974 Internal reflection spectra of several tetracyclines Applied Spectroscopy 28 3840 10.1366/000370274774332984.CrossRefGoogle Scholar
Thangadurai, S. Abraham, J.T. Srivastava, A.K. Moorthy, M.N. Shukla, S.K. and Anhaneyulu, Y., 2005 X-ray powder diffraction patterns for certain b-lactam, tetracycline and macrolide antibiotic drugs Analytical Sciences 21 833838 10.2116/analsci.21.833.CrossRefGoogle Scholar
Turku, I. Sainio, T. and Paatero, E., 2007 Thermodynamics of tetracycline adsorption on silica Environmental Chemistry Letters 5 225228 10.1007/s10311-007-0106-1.CrossRefGoogle Scholar
Wang, Y.-J. Jia, D.-A. Sun, R.-J. Zhu, H.-W. and Zhou, D.-M., 2008 Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH Environmental Science & Technology 42 32543259 10.1021/es702641a.CrossRefGoogle ScholarPubMed
Wessels, J.M. Ford, W.E. Szymczak, W. and Schneider, S., 1998 The complexation of tetracycline and anhydrotetra-cycline with Mg2+ and Ca2+: A spectroscopic study Journal of Physical Chemistry B 102 93239331 10.1021/jp9824050.CrossRefGoogle Scholar
Zhang, Y. Lewis, R.N.A.H. Hodges, R.S. and McElhaney, R.N., 1992 FTIR spectroscopic studies of the conformation and amide hydrogen exchange of a peptide model of the hydrophobic transmembrane a-aelices of membrane proteins Biochemistry 31 1157211578 10.1021/bi00161a041.CrossRefGoogle ScholarPubMed