Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T03:07:17.217Z Has data issue: false hasContentIssue false

Formation of Highly Selective Cesium-Exchange Sites in Montmorillonites

Published online by Cambridge University Press:  02 April 2024

André Maes
Affiliation:
Afdeling Interfasechemie, Katholieke Universiteit Leuven, Kardinaal Mercierlaan 92, B-3030 Leuven, Belgium
Dirk Verheyden
Affiliation:
Afdeling Interfasechemie, Katholieke Universiteit Leuven, Kardinaal Mercierlaan 92, B-3030 Leuven, Belgium
Adrien Cremers
Affiliation:
Afdeling Interfasechemie, Katholieke Universiteit Leuven, Kardinaal Mercierlaan 92, B-3030 Leuven, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ion-exchange sites with very high selectivity for Cs (ΔGCa2+Cs+ = 40 kJ/eq) similar to illite were generated in a controlled way in montmorillonites b. (1) repeated wetting-drying cycles and b. (2) charge reduction using the Hofmann-Klemen effect. An almost continuous range of sites with selectivities varying from ln KCa2+Cs+ = 33 to 5 was observed.

Type
Research Article
Copyright
Copyright © 1985, The Clay Minerals Society

References

Barrer, R. M. and Klinowski, J., 1972 Ion exchange involving several groups of homogeneous sites J. Chem. Soc. Faraday Trans. I 68 7387.CrossRefGoogle Scholar
Bolt, G. H., Sumner, M. E. and Kamphorst, A., 1963 A study of the equilibria between three categories of potassium in an illitic soil Soil Sci. Soc. Amer. Proc 27 294299.CrossRefGoogle Scholar
Brouwer, E., Baeyens, B., Maes, A. and Cremers, A., 1983 Cesium and rubidium ion equilibria in illite clay J. Phys. Chem 87 12131219.CrossRefGoogle Scholar
Bruggenwert, M. G. M., Kamphorst, A. and Bolt, G. H., 1979 Survey of experimental information on cation exchange in soil systems Soil Chemistry Amsterdam Elsevier 141203.Google Scholar
Eisenmann, G., 1962 Cation selective glass electrodes and their mode of operation Biophys. J 2 259323.CrossRefGoogle Scholar
Farmer, V. C., Russell, J. D. and Bailey, S. W., 1967 Infrared absorption spectrometry in clay studies Clays and Clay Minerals New York Pergamon Press 121142.Google Scholar
Gaultier, J. P. and Mamy, J., 1978 Etude des facteurs influencant l’évolution structurale de la montmorillonite K et sa reversibilité Clay Miner 13 139146.CrossRefGoogle Scholar
Hofmann, U. and Kiemen, R., 1950 Verlust der Austauschfähigkeit von Lithiumionen an Bentoniet durch Erhitzung Z. Anorg. Allg. Chem 262 9599.CrossRefGoogle Scholar
Lagaly, G., 1981 Characterization of clays by organic compounds Clay Miner 16 121.CrossRefGoogle Scholar
Maes, A. and Cremers, A., 1977 Charge density effects in ion exchange. I. Heterovalent exchange equilibria J. Chem. Soc., Faraday Trans. I 73 18071814.CrossRefGoogle Scholar
Maes, A. and Cremers, A., 1978 Charge density effects in ion exchange II. Homovalent exchange equilibria J. Chem. Soc., Faraday Trans. I 74 12341241.CrossRefGoogle Scholar
Peigneur, P., Maes, A. and Cremers, A., 1975 Heterogeneity of charge density distribution in montmorillonite as inferred from cobalt adsorption Clays & Clay Minerals 23 7175.CrossRefGoogle Scholar
Plançon, A., Besson, G., Gaultier, J. P., Mamy, J., Tchoubar, C., Mortland, M. M. and Farmer, V. C., 1979 Qualitative and quantitative study of a structural reorganization in montmorillonite after potassium fixation Proc. Int. Clay Conf. Amsterdam Elsevier 4554.Google Scholar
Sawhney, B. L., 1972 Selective sorption and fixation of cations by clay minerals: a review Clays & Clay Minerals 22 93100.CrossRefGoogle Scholar
Talibudeen, O. and Goulding, K. W. T., 1983 Charge heterogeneity in smectites Clays & Clay Minerals 31 3742.CrossRefGoogle Scholar
Tamura, T., 1964 Reactions of Cs-137 and Sr-90 with soil minerals and sesquioxides Proc. 8th Int. Cong. Soil Sci., Bucharest 3 465477.Google Scholar