Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T07:56:08.276Z Has data issue: false hasContentIssue false

Formation, Compositions, and Properties of Hydroxy-Al- and Hydroxy-Mg-Montmorillonite

Published online by Cambridge University Press:  01 July 2024

G. W. Brindley
Affiliation:
Mineral Sciences Building, The Pennsylvania State University, University Park, Pennsylvania 16802
Chih-Chun Kao
Affiliation:
Mineral Sciences Building, The Pennsylvania State University, University Park, Pennsylvania 16802
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hydroxy-Al- and hydroxy-Mg-montmorillonite were prepared by treating dispersed Na-montmorillonite with aluminum and magnesium nitrate solutions and titrating with NaOH solutions so that the OH/Al ratio varied from zero to 3.0 and the OH/Mg ratio from zero to 2.0. External precipitation of Al and Mg hydroxides was observed when the OH/M ratios (M = metal) approached 3 and 2, respectively. From chemical analyses of the initial Na-montmorillonite and the hydroxy-metal montmorillonites, structural formulae were derived by assuming that the silicate layer compositions remained unchanged. Prior to the addition of NaOH, the average interlayer material approximated in composition to [Al(OH)2]+ and [Mg(OH)]+. With additions of NaOH the interlayer compositions moved progressively towards Al(OH)3 and Mg(OH)2. When the hydroxy interlayers approached completion, external precipitation was observed. X-ray powder diffraction data showed that the hydroxy-Mg products have less tendency to swell in ethylene glycol and water, and greater thermal stability than the hydroxy-Al products. Initially, when the average interlayer compositions were near Al(OH)2 and Mg(OH), swelling followed more nearly the normal behavior.

Резюме

Резюме

Гидрокси-А1 и гидпокси-М§-монтмориллониты были подготовлены путём воздействия растворов алюминиевых и магниевых нитратов на дисперсный Иа-монтмориллонит с последующим титрованием растворами КаОН, так что соотношение ОН/А1 изменялось от нуля до 3,0, а соотношение ОН/Мg от нуля до 2,0. Внешнее осаждение гидроокисей А1 и Мg наблюдалось, когда соотношение ОН/М (М = металл) достигало 2 и 3 соответственно. На основе химического анализа, исходя из предположения, что силикатный состав слоев не изменялся, были получены структурные формулы исходных Ка-монтмориллонитов и гидрокси-металл монтмориллонитов. Перед добавкой NaOH межслойный материал напоминал по состоянию [А1(ОН)2]+ и [Мg(ОН)]+. После добавки NаОН межслойный состав постепенно сдвинулся в сторону А1(ОН)3 и Мg(ОН)2. Внешние осаждения выступали, когда гидрокси-слои достигали завершения. Данные по рентгеновской порошковой дифракции показали, что гидрокси-Мв продукты имеют меньшую тенденцию к набуханию в этиленовом гликоле и воде, и большую термическую стабильность, чем гидрокси-А1 продукты. В случае, когда средние межслойные составы были близки к Аl(ОН)2 и Мg(ОН), набухание проходило по более нормальному пути. [Е.С.]

Resümee

Resümee

Hydroxy-Al- und Hydroxy-Mg-Montmorillonite wurden hergestellt, indem man dispergierten Na-Montmorillonit mit Aluminium- und Magnesiumnitratlösungen behandelte und mit NaOH-Lösungen titrierte, so daß das OH/Al-Verhältnis von 0 bis 3,0, und das OH/Mg-Verhältnis von 0 bis 2,0 variierte. Al- und Mg-Hydroxyde fielen aus, wenn das OH/M-Verhältnis (M = Metall) 3 bzw. 2 erreichte. Aus chemischen Analysen des ursprünglichen Na-Montmorillonites und der Hydroxy-Metall-Montmorillonite wurden unter der Annahme Strukturformeln abgeleitet, daß die Zussammensetzung der Silikatlagen unverändert bleibt. Vor der Zugabe von NaOH hatte die durchschnittliche Zwischenschichtsubstanz etwa die Zusammensetzung [Al(OH)2]+ bzw. [Mg(OH)]+. Durch die Zugabe von NaOH verschob sich die Zusammensetzung der Zwischenschict immer mehr in Richtung Al(OH)3 bzw. Mg(OH)2. Wenn die Hydroxy-Zwischenlagen vollständig waren, war eine Ausfällung zu beobachten. Röntgendiffraktometerdaten zeigten, daß die Hydroxy-Mg-Produkte eine geringe Tendenz zum Quellen in Ethylenglycol und Wasser, sowie eine größere thermische Stabilität haben als die Hydroxy-Al-Produkte. Anfänglich, wenn die durchschnittliche Zusammensetzung der Zwischenschicht etwa AI(OH)2 bzw. Mg(OH) ist, zeigt sich nahezu das übliche Quellverhalten. [U.W.]

Résumé

Résumé

Les montmorillonites hydroxy-Al et hydroxy-Mg ont été préparées en traitant de la montmoril-lonite-Na dispersée avec des solutions de nitrate d'aluminium et de magnesium et en titrant avec des solutions de NaOH, de telle façon que la proportion OH/Al variait de zéro à 3,0 et la proportion OH/Mg de zéro à 2,0. Une précipitation externe d'hydroxides d'Al et de Mg a été observée lorsque les proportions OH/M (M = metal) approchaient 3 et 2, respectivement. A partir d'analyses chimiques des montmorillon-ites-Na initiales et des motmorillonites hydroxy-metal, des formules structurales ont été dérivées en assumant que les compositions de la couche silicate demeuraient inchangées. Avant l'addition de NaOH, la composition moyenne du matériel intercouche était approximativement [Al(OH)2]+ et [Mg(OH)]+. Avec l'addition de NaOH, les compositions intercouche se sont déplacées progressivement vers Al(OH)3 et Mg(OH)2. Lorsque les intercouches hydroxy étaient presque complètes, la precipitation externe a été observée. Les données de diffraction poudrée aux rayons-X ont montré que les produits hydroxy-Mg avaient moins tendance á gonfler dans le glycol éthylène et dans l'eau, et avaient une plus grande stabilité thermale que les produits hydroxy-Al. Initialement, lorsque les compositions moyennes d'intercouches étaient près d'Al(OH)2, et Mg(OH), la conduite du gonflement était plus près de la normale. [D.J.]

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1980

References

Aveston, J., (1965) Hydrolysis of the aluminium ion: ultracentrifugation and acidity measurements J. Chem. Soc. 44384443.CrossRefGoogle Scholar
Bailey, S. W. and Gieseking, J. E., (1975) Chlorites Soil Components, Vol. 2, Inorganic Components New York Springer-Verlag 191263.CrossRefGoogle Scholar
Barnhisel, R. I. and Rich, C. I., (1966) Preferential hydroxy aluminum interlayering in montmorillonite and vermiculite Soil Sci. Soc. Amer. Proc. 30 3539.CrossRefGoogle Scholar
Brindley, G. W. and Brown, G., (1961) Chlorite minerals The X-ray Identification and Crystal Structures of Clay Minerals London Mineralogical Society 242296.Google Scholar
Brindley, G. W. and Sempels, R. E., (1977) Preparation and properties of some hydroxy-aluminium beidellites Clay Miner. 12 229237.CrossRefGoogle Scholar
Brindley, G. W. and Yamanaka, S., (1979) A study of hydroxy-chromium montmorillonites and the form of the hydroxy-chromium polymers Amer. Mineral. 64 830835.Google Scholar
Brydon, J. E. and Kodama, H., (1966) The nature of aluminum hydroxide-montmorillonite complexes Amer. Mineral. 51 875889.Google Scholar
Brydon, J. E. and Turner, R. C., (1972) The nature of Kenya vermiculite and its aluminum hydroxide complexes Clays & Clay Minerals 20 111.CrossRefGoogle Scholar
Caillère, S. and Hénin, S., (1949) Experimental formation of chlorites from montmorillonite Mineral. Mag. 28 612620.Google Scholar
Carstea, D. D., (1968) Formation of hydroxy-Al and -Fe interlayers in montmorillonite and vermiculite: influence of particle size and temperature Clays & Clay Minerals 16 231238.CrossRefGoogle Scholar
Carstea, D. D. Harward, M. E. and Knox, E. G., (1970) Comparison of iron and aluminum hydroxy interlayers in montmorillonite and vermiculite Soil Sci. Soc. Amer. Proc. 517521.Google Scholar
Carstea, D. D. Harward, M. E. and Knox, E. G., (1970) Formation and stability of hydroxy-Mg interlayers in phyllosilicates Clays & Clay Minerals 18 213222.CrossRefGoogle Scholar
Frink, C. R. and Peech, M., (1963) Hydrolysis and exchange reactions of the aluminum ion in hectorite and montmorillonite suspensions Soil Sci. Soc. Amer. Proc. 27 527530.CrossRefGoogle Scholar
Fripiat, J. Van Cauwelaert, F. and Bosmans, H., (1965) Structure of aluminum cations in aqueous solutions J. Phys. Chem. 69 24582461.CrossRefGoogle Scholar
Grim, R. E. and Güven, N., (1978) Bentonites—Geology, Mineralogy, Properties and Uses Amsterdam Elsevier 149151.Google Scholar
Gupta, G. C. and Malik, W. U., (1969) Transformation of montmorillonite to nickel-chlorite Clays & Clay Minerals 17 233239.CrossRefGoogle Scholar
Gupta, G. C. and Malik, W. U., (1969) Chloritization of montmorillonite by its coprecipitation with magnesium hydroxide Clays & Clay Minerals 17 331338.CrossRefGoogle Scholar
Gupta, G. C. and Malik, W. U., (1969) Fixation of hydroxy-aluminum by montmorillonite Amer. Mineral. 54 16251634.Google Scholar
Hsu, Pa. H., (1968) Heterogeneity of montmorillonite surface and its effect on the nature of hydroxy-aluminum interlayers Clays & Clay Minerals 16 303311.CrossRefGoogle Scholar
Hsu, Pa H and Bates, T. F., (1964) Formation of X-ray amorphous and crystalline luminum hydroxides Minearl. Mag. 33 749768.Google Scholar
Lahav, N. Shani, U. and Shabtai, J., (1978) Cross-linked smectites. I. Synthesis and’ properties of hydroxy-aluminum-montmorillonite Clays & Clay Minerals 26 107114.CrossRefGoogle Scholar
Marshall, C. E., (1964) The Physical Chemistry and Mineralogy of Soils. Vol. 1: Soil Materials New York John Wiley.Google Scholar
Medlin, J. H. Suhr, N. H. and Bodkin, J. B., (1964) Atomic absorption analysis of silicates employing LiBO2 fusion Atomic Absorption Newsletter 8 2529.Google Scholar
Mering, J. and Glaeser, R., (1954) Sur le role de la valence des cations échangeables dans la montmorillonite Bull. Soc. Fr. Mineral. Cristallog 77 519530.Google Scholar
Rich, C. I., (1968) Hydroxy interlayers in expansible layer silicates Clays & Clay Minerals 16 1530.CrossRefGoogle Scholar
Sawhney, B. L., (1968) Aluminum interlayers in layer silicates. Effect of OH/Al ratio of Al solution, time of reaction, and type of structure Clays & Clay Minerals 16 158163.CrossRefGoogle Scholar
Slaughter, M. and Milne, I. H., (1960) The formation of chlorite-like structures from montmorillonite Clays & Clay Minerals 7 114124.Google Scholar
Van Cauwelaert, H. and Bosmans, J. J., (1969) Polycations formés dans l’hydrolyse de l’ion aluminium Rev. Chim. Minér. 6 611623.Google Scholar
Yamanaka, S. and Brindley, G. W., (1978) Hydroxy-nickel interlayering in montmorillonite by titration method Clays & Clay Minerals 26 2124.CrossRefGoogle Scholar
Yamanaka, S. and Brindley, G. W., (1979) High surface area solids obtained by reaction of montmorillonite with zirconyl chloride Clays & Clay Minerals 27 119124.CrossRefGoogle Scholar