Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T18:57:06.207Z Has data issue: false hasContentIssue false

Experimental Study of Smectite Interaction with Metal Fe at Low Temperature: 1. Smectite Destabilization

Published online by Cambridge University Press:  01 January 2024

Sébastien Lantenois*
Affiliation:
Institut des Sciences de la Terre d’Orléans (ISTO), CNRS — Université d’Orléans, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France
Bruno Lanson
Affiliation:
Environmental Geochemistry Group, LGIT, Maison des GéoSciences, Université J. Fourier — CNRS, BP 53, 38041 Grenoble Cedex 9, France
Fabrice Muller
Affiliation:
Institut des Sciences de la Terre d’Orléans (ISTO), CNRS — Université d’Orléans, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France
Andreas Bauer
Affiliation:
Institut für Nukleare Entsorgung, Forschungzentrum Karlsruhe, PO Box 3640, 76021 Karlsruhe Germany
Michel Jullien
Affiliation:
Commissariat à l’Energie Atomique (CEA), Centre d’Etude de Cadarache DEN/DTN/SMTM/Laboratoire de Modélisation des Transferts dans l’Environnement, Bat 307, 13108 Saint Paul Lez Durance Cedex, France
Alain Plançon
Affiliation:
Institut des Sciences de la Terre d’Orléans (ISTO), CNRS — Université d’Orléans, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France
*
*E-mail address of corresponding author: sebastien.lantenois@univ-orleans.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Interaction between metal Fe and a variety of natural and synthetic smectite samples with contrasting crystal chemistry was studied by scanning electron microscopy and X-ray diffraction from experiments conducted at 80°C. These experiments demonstrate an important reactivity contrast as a function of smectite crystal chemistry. An XRD method involving the use of an internal standard allowed quantification of the relative proportion of smectite destabilized as a function of initial pH conditions as well as of smectite structural parameters. In mildly acidic to neutral pH conditions, a significant proportion of metal Fe is corroded to form magnetite without smectite destabilization. Under basic pH conditions, smectite and metal Fe are partly destabilized to form magnetite and newly-formed 1:1 phyllosilicate phases (odinite and crondstedtite). More specifically, systematic destabilization of both metal Fe and smectite is observed for dioctahedral smectites while trioctahedral smectites are essentially unaffected under similar experimental conditions. In addition, smectite reactivity is enhanced with increasing Fe3+ content and with the presence of Na+ cations in smectite interlayers. A conceptual model for smectite destabilization is proposed. This model involves first the release of protons from smectite structure, MeFe3+OH groups being deprotonated preferentially and metal Fe acting as proton acceptor. Corrosion of metal Fe results from its interaction with these protons. The Fe2+ cations resulting from this corrosion process sorb on the edges of smectite particles to induce the reduction of structural Fe3+ and migrate into smectite interlayers to compensate for the increased layer-charge deficit. Interlayer Fe2+ cations subsequently migrate to the octahedral sheet of smectite because of the extremely large layer-charge deficit. At low temperature, this migration is favored by the reaction time and by the absence of protons within the di-trigonal cavity. Smectite destabilization results from the inability of the tetrahedral sheets to accommodate the larger dimensions of the newly formed trioctahedral domains resulting from the migration of Fe2+ cations.

Type
Research Article
Copyright
Copyright © 2005, The Clay Minerals Society

References

Aogaki, R., White, R.E. Conway, B.E. and Bockris, JO’M, (1999) Non-equilibrium fluctuations in the corrosion Modern Aspects of Electrochemistry New York Kluwer 217305.Google Scholar
Bailey, S.W., Brindley, G.W. and Brown, G., (1980) Structures of layer silicates Crystal Structures of Clay Minerals and their X-ray Identification London Monograph 5, Mineralogical Society 1123.Google Scholar
Ben Brahim, J. Armagan, G. Besson, G. and Tchoubar, C., (1983) X-ray diffraction studies on the arrangement of water molecules in a smectite. I. Homogeneous two-water-layer Na-beidellite Journal of Applied Crystallography 16 264269 10.1107/S0021889883010353.CrossRefGoogle Scholar
Ben Brahim, J. Besson, G. and Tchoubar, C., (1983) Layer succession and water molecules arrangement in a homogeneous two-water layer Na-smectite Proceedings of the 5th Meeting of the European Clay Groups 6575.Google Scholar
Ben Brahim, J. Besson, G. and Tchoubar, C., (1984) Etude des profils des bandes de diffraction X d’une beidellite-Na hydratée à deux couches d’eau. Détermination du mode d’empilement des feuillets et des sites occupés par l’eau Journal of Applied Crystallography 17 179188 10.1107/S0021889884011262.CrossRefGoogle Scholar
Besson, G. and Tchoubar, C., (1980) Exemple d’ordre-désordre par rotation des feuillets dans la montmorillonite potassique Bulletin de Minéralogie 103 429433.CrossRefGoogle Scholar
Brindley, G.W. and Ertem, G., (1971) Preparation and solvation properties of some variable charge montmorillonites Clays and Clay Minerals 19 399404.CrossRefGoogle Scholar
Chang, F.R.C. Skipper, N.T. and Sposito, G., (1995) Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates Langmuir 11 27342741 10.1021/la00007a064.CrossRefGoogle Scholar
Cosultchi, A. Rossbach, P. and Hernandez-Calderon, I., (2003) XPS analysis of petroleum well tubing adherence Surface and Interface Analysis 35 239245 10.1002/sia.1516.CrossRefGoogle Scholar
Cuadros, J. and Altaner, S.P., (1998) Compositional and structural features of the octahedral sheet in mixed-layer illite/smectite from bentonites European Journal of Mineralogy 10 111124 10.1127/ejm/10/1/0111.CrossRefGoogle Scholar
Emmerich, K. Madsen, F.T. and Kahr, G., (1999) Dehydroxylation behavior of heat-treated and steam-treated homoionic cis-vacant montmorillonites Clays and Clay Minerals 47 591604 10.1346/CCMN.1999.0470506.CrossRefGoogle Scholar
Farmer, V.C., (1974) The Infrared Spectra of Minerals London Monograph 4, Mineralogical Society 10.1180/mono-4.CrossRefGoogle Scholar
Gaboriau, H., (1991) Interstratifiés smectite-kaolinite de l’Eure .Google Scholar
Gates, W.P. Slade, P.G. Manceau, A. and Lanson, B., (2002) Site occupancies by iron in nontronites Clays and Clay Minerals 50 223239 10.1346/000986002760832829.CrossRefGoogle Scholar
Glaeser, R. and Fripiat, J.J., (1976) Hydratation des smectites et démixtion des cations Li, Na en fonction de la localisation des substitutions isomorphiques Clay Minerals 11 9399 10.1180/claymin.1976.011.2.01.CrossRefGoogle Scholar
Goodman, B.A. Russell, J.D. Fraser, A.R. and Woodhams, F.W.D., (1976) A Mössbauer and IR spectroscopic study of the structure of nontronite Clays and Clay Minerals 24 5359 10.1346/CCMN.1976.0240201.CrossRefGoogle Scholar
Greene-Kelly, L., (1955) Dehydration of montmorillonite minerals Mineralogical Magazine 30 604615 10.1180/minmag.1955.030.228.06.CrossRefGoogle Scholar
Guillaume, D. Neaman, A. Cathelineau, M. Mosser-Ruck, R. Peiffert, C. Abdelmoula, M. Dubessy, J. Villieras, F. Baronnet, A. and Michau, N., (2003) Experimental synthesis of chlorite from smectite at 300°C in the presence of metallic Fe Clay Minerals 38 281302 10.1180/0009855033830096.CrossRefGoogle Scholar
Habert, B., (2000) Réactivité du fer dans les gels et les smectites .Google Scholar
Hamilton, D.L. and Henderson, C.M.B., (1968) The preparation of silicate compositions by a gelling method Mineralogical Magazine 36 832838 10.1180/minmag.1968.036.282.11.CrossRefGoogle Scholar
Heller-Kallai, L., (1975) Interaction of montmorillonite with alkali halides Proceedings of the International Clay Conference 361375.Google Scholar
Heller-Kallai, L., (1975) Montmorillonite-alkali halide interaction: a possible mechanism of illitization Clays and Clay Minerals 23 462467 10.1346/CCMN.1975.0230609.CrossRefGoogle Scholar
Heller-Kallai, L., (2001) Protonation-deprotonation of diocta-hedral smectites Applied Clay Science 20 2738 10.1016/S0169-1317(01)00038-2.CrossRefGoogle Scholar
Heller-Kallai, L. and Mosser, C., (1995) Migration of Cu ions in Cu montmorillonite heated with and without alkali halides Clays and Clay Minerals 43 738743 10.1346/CCMN.1995.0430610.CrossRefGoogle Scholar
Heller-Kallai, L. and Rozenson, I., (1981) Nontronite after acid or alkali attack Chemical Geology 32 95102 10.1016/0009-2541(81)90131-5.CrossRefGoogle Scholar
Hillier, S., (2000) Accurate quantitative analysis of clay and other minerals in sandstones by XRD: comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation Clay Minerals 35 291302 10.1180/000985500546666.CrossRefGoogle Scholar
Hofmann, V. and Kiemen, R., (1950) Verlust der Austauschfàhigkeit von lithiumionen aus Bentonit durch Erhitzung Zeitschrift fur Anorganische und Allgemeine Chemie 262 9599 10.1002/zaac.19502620114.CrossRefGoogle Scholar
Jaynes, W.F. and Bigham, J.M., (1987) Charge reduction, octahedral charge, and lithium retention in heated, Li-saturated smectites Clays and Clay Minerals 35 440448 10.1346/CCMN.1987.0350604.CrossRefGoogle Scholar
Kamei, G. Oda, C. Mitsui, S. Shibata, M. and Shinozaki, T., (1999) Fe(II)-Na ion exchange at interlayers of smectite: adsorption-desorption experiments and a natural analogue Engineering Geology 54 1520 10.1016/S0013-7952(99)00057-5.CrossRefGoogle Scholar
Kloprogge, J.T. Komarneni, S. and Amonette, J.E., (1999) Synthesis of smectite clay minerals: a critical review Clays and Clay Minerals 47 529554 10.1346/CCMN.1999.0470501.CrossRefGoogle Scholar
Kohier, E., (2001) Réactivité des mélanges synthétiques smectite/kaolinite et smectite/aluminium gel en présence d’un excès de fer métal .Google Scholar
Lantenois, S., (2003) Réactivité fer métal/smectites en milieu hydraté à 80°C .Google Scholar
Madejová, J. and Komadel, P., (2001) Baseline studies of The Clay Minerals Society Source Clays: infrared methods Clays and Clay Minerals 49 410432 10.1346/CCMN.2001.0490508.CrossRefGoogle Scholar
Madejová, J. Bujdak, J. Gates, W.P. and Komadel, P., (1996) Preparation and infrared spectroscopic characterization of reduced-charge montmorillonite with various Li contents Clay Minerals 31 233241 10.1180/claymin.1996.031.2.09.CrossRefGoogle Scholar
Madejová, J. Arvaiova, B. and Komadel, P., (1999) FTIR spectroscopic characterization of thermally treated Cu2+, Cd2+ and Li+ montmorillonites Spectrochimica Acta Part A 55 24672476 10.1016/S1386-1425(99)00039-6.CrossRefGoogle Scholar
Madejová, J. Bujdak, J. Petit, S. and Komadel, P., (2000) Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites. (I) Mid-infrared region Clay Minerals 35 739751 10.1180/000985500547160.CrossRefGoogle Scholar
Madejová, J. Bujdak, J. Petit, S. and Komadel, P., (2000) Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites. (II) Near-infrared region Clay Minerals 35 753761 10.1180/000985500547205.CrossRefGoogle Scholar
Mamy, J., (1968) Recherches sur l’hydratation de la montmorillonite: Propriétés diélectriques et structure du film d’eau .Google Scholar
McBride, M.B. and Mortland, M.M., (1974) Copper (II) interactions with montmorillonite: Evidence from physical methods Soil Science Society of America Proceedings 38 408415 10.2136/sssaj1974.03615995003800030014x.CrossRefGoogle Scholar
Monier, G. and Robert, J.-L., (1986) Evolution of the miscibility gap between muscovite and biotite solid solutions with increasing lithium content: an experimental study in the system K2O-Li2O-MgO-FeO-Al2O3-SiO-H2O-HF at 600°C, 2 kbar p H2O- comparison with natural lithium micas Mineralogical Magazine 50 641651 10.1180/minmag.1986.050.358.09.CrossRefGoogle Scholar
Mosser, C. Michot, L.J. Villieras, F. and Romeo, M., (1997) Migration of cations in copper(II)-exchanged montmorillo-nite and Laponite upon heating Clays and Clay Minerals 45 789802 10.1346/CCMN.1997.0450603.CrossRefGoogle Scholar
Norrish, K., (1954) The swelling of montmorillonite Discussions of the Faraday Society 18 120134 10.1039/df9541800120.CrossRefGoogle Scholar
Palkova, H. Madejová, J. and Righi, D., (2003) Acid dissolution of reduced-charge Li- and Ni-montmorillonites Clays and Clay Minerals 51 133142 10.1346/CCMN.2003.0510202.CrossRefGoogle Scholar
Pelletier, M. Michot, L.J. Humbert, B. Barres, O. D’espinose de la Callerie, J.B. and Robert, J.L., (2003) Influence of layer charge on the hydroxyl stretching of trioctahedral clay minerals: A vibrational study of synthetic Na- and K-saponites American Mineralogist 88 18011808 10.2138/am-2003-11-1221.CrossRefGoogle Scholar
Perronnet, M., (2001) Etude des interactions fer-argile en condition de stockage géologique profond des déchets nucléaires HAVL .Google Scholar
Perronnet, M., (2004) Etude des interactions fer-argile en condition de stockage géologique profond des déchets nucléaires HAVL Nancy, France ENS Géologie.Google Scholar
Pons, C.H. Rousseaux, F. and Tchoubar, D., (1981) Utilisation du rayonnement synchrotron en diffusion aux petits angles pour l’étude du gonflement des smectites: I. Etude du système eau-montmorillonite-Na en fonction de la température Clay Minerals 16 2342 10.1180/claymin.1981.016.1.02.CrossRefGoogle Scholar
Roux, J. and Volfinger, M., (1996) Mesures précises à l’aide d’un détecteur courbe Journal de Physique IV 127134.Google Scholar
Russell, J.D., (1979) An infrared spectroscopic study of the interaction of nontronite and ferruginous montmorillonites with alkali metal hydroxides Clay Minerals 14 127137 10.1180/claymin.1979.014.2.05.CrossRefGoogle Scholar
Russell, J.D. Fraser, A.R. and Wilson, M.J., (1994) Infrared methods in clay mineralogy Spectroscopic and Chemical Determinative Methods London Chapman & Hall 1167 10.1007/978-94-011-0727-3_2.CrossRefGoogle Scholar
Shannon, R.D., (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Acta Crystallographica A 32 751767 10.1107/S0567739476001551.CrossRefGoogle Scholar
Skipper, N.T. Chang, F.R.C. and Sposito, G., (1995) Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. 1. Methodology Clays and Clay Minerals 43 285293 10.1346/CCMN.1995.0430303.CrossRefGoogle Scholar
Suquet, H.B., (1978) Propriétés de gonflement et structure de la saponite. Comparaison avec la vermiculite .Google Scholar
Suquet, H. Ilyama, J.T. Kodama, H. and Pezerat, H., (1977) Synthesis and swelling properties of saponites with increasing layer charge Clays and Clay Minerals 25 231242 10.1346/CCMN.1977.0250310.CrossRefGoogle Scholar
Suquet, H. Malard, C. Copin, E. and Pezerat, H., (1981) Variation du paramètre b et de la distance basale d001 dans une série de saponites à charge croissante: I Etats hydratés Clay Minerals 16 5367 10.1180/claymin.1981.016.1.04.CrossRefGoogle Scholar
Tomoe, Y. Shimizu, M. and Nagae, Y., (1999) Unusual corrosion of a drill pipe in newly developed drilling mud during deep drilling Corrosion 55 706713 10.5006/1.3284026.CrossRefGoogle Scholar
Tournassat, C. Charlet, L. and Greneche, J.-M., (2005) Interactions of Fe2+, Zn2+, and H4SiO4 at clay/water interfaces: Distinguishing sorption, coadsorption, and surface oxidation phenomena Geochimica et Cosmochimica Acta .Google Scholar
Vantelon, D. Pelletier, M. Michot, L.J. Barres, O. and Thomas, F., (2001) Fe, Mg and Al distribution in the octahedral sheet of montmorillonites. An infrared study in the OH-bending region Clay Minerals 36 369379 10.1180/000985501750539463.CrossRefGoogle Scholar