Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T06:24:13.531Z Has data issue: false hasContentIssue false

Evolution of the Porous Structure and Surface Area of Palygorskite Under Vacuum Thermal Treatment

Published online by Cambridge University Press:  02 April 2024

J. M. Cases
Affiliation:
Centre de Recherche sur la Valorisation des Minerais et U.A. 235- B.P. 40, 54501 Vandœuvre Cedex, France
Y. Grillet
Affiliation:
Centre de Thermochimie et de Microcalorimétrie - 26, rue du 141ème R.I.A., 13003 Marseille, France
M. François
Affiliation:
Centre de Recherche sur la Valorisation des Minerais et U.A. 235- B.P. 40, 54501 Vandœuvre Cedex, France
L. Michot
Affiliation:
Centre de Recherche sur la Valorisation des Minerais et U.A. 235- B.P. 40, 54501 Vandœuvre Cedex, France
F. Villiéras
Affiliation:
Centre de Recherche sur la Valorisation des Minerais et U.A. 235- B.P. 40, 54501 Vandœuvre Cedex, France
J. Yvon
Affiliation:
Centre de Recherche sur la Valorisation des Minerais et U.A. 235- B.P. 40, 54501 Vandœuvre Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The modification of the external surface area and the two types of microporosity of palygorskite (structural and interfiber porosity) were examined as a function of the temperature of a vacuum thermal treatment to 500°C. The methods used included: controlled-transformation-rate thermal analysis, N2 and Ar low-temperature adsorption microcalorimetry, conventional and continuous gas-adsorption volumetry (for N2 and Ar) at 77 K and CO2 at 273 and 293 K, water vapor adsorption gravimetry, and immersion microcalorimetry in water. At temperatures < 100°C only 18% of the structural microporosity was available to N2, 13% to Ar, and 100% to CO2 at 273 K. In both experiments the channels filled at very low relative pressures. At temperatures between 70° and 130°C the structure folded, and the mineral transformed to anhydrous palygorskite, which showed no structural microporosity. The interfiber microporosity was found to be independent of the temperature treatment, and the external surface area decreased slightly from 65 to 54 m2/g. The water adsorption isotherms showed that the folding of the structure was reversible up to final outgassing temperatures >225°C.

Type
Research Article
Copyright
Copyright © 1991, The Clay Minerals Society

References

Anonymous (1976) Gas Encyclopedia: L’Air Liquide, ed., Elsevier, Amstedam, 1150 pp.Google Scholar
Barrer, R. M. and Mackenzie, N., 1954 Sorption by atta-pulgite. I. Availability of intracrystalline channels J. Phys. Chem. 58 560568.CrossRefGoogle Scholar
Barrer, R. M., Mackenzie, N. and MacLeod, D. M., 1959 Sorption of attapulgite. II. Selectivity shown by attapulgite, sepiolite and montmorillonite for n-paraffins J. Phys. Chem. 58 568573.CrossRefGoogle Scholar
Bradley, G. V., 1940 The structural scheme of attapulgite Amer. Mineral. 25 405410.Google Scholar
Cases, J. M., 1979 Adsorption des tensio-actifs à l’interface solide-liquide: Thermodynamique et influence de l’hétérogénéité des adsorbants Bull. Minerai. 102 684707.CrossRefGoogle Scholar
Cases, J. M. and François, M., 1982 Etude des propriétés de l’eau au voisinage des interfaces Agronomie 2 931938.CrossRefGoogle Scholar
de Boer, J. H., Lippens, B. G., Linsen, B. G., Broekhollf, J. G. P. Van den Heuvel, A. and Osinga, Th J, 1966 The t-curve of multimolecular N2 adsorption J. Colloid Interface Sci. 21 405414.CrossRefGoogle Scholar
Delon, J. F., 1970 Contribution à l’étude de la surface spécifique et de la microporosité des minéraux et des roches Nancy, France Université de Nancy.Google Scholar
Drits, V. A. and Sokolova, G. V., 1971 Structure of paly-gorskite Soviet Phys. Crystallogr. 16 183185.Google Scholar
Dubinin, M. M., 1966 Modern state of the theory of gas and vapor adsorption by microporous adsorbants Pure Appl. Chem. 10 309321.CrossRefGoogle Scholar
Emmett, P. H. and Brunauer, J., 1937 The use of low temperature van der Waals adsorption isotherms in determining the surface area by ion synthetic ammonia catalyst J. Amer. Chem. 59 15531564.CrossRefGoogle Scholar
Fenoli Hach-Ali, P. and Martin Vivaldi, J. L., 1968 Contribution al estudio de la sepiolita: IV. Superficie especifica de los cristalles An R. Soc. Esp. Fis. Quim. 64B 7782.Google Scholar
Fernandez Alvarez, T., 1978 Effecto de la deshydratacion sobre las propriedades adsorbentes de la palygorskita y sepiolita. I. Adsorcion di nitrogeno Clay Miner. 13 325335.CrossRefGoogle Scholar
Fripiat, J. J., Cases, J. M., François, M. and Letellier, M., 1982 Thermodynamic and microdynamic behavior of water in clay suspensions and gels J. Colloid Interface Sci. 89 378400.CrossRefGoogle Scholar
Grillet, Y., Cases, J. M., François, M., Rouquerol, J. and Poirier, J. E., 1988 Modification of the porous structure and surface area of sepiolite under vacuum thermal treatment Clays & Clay Minerals 36 233242.CrossRefGoogle Scholar
Hagymassy, J., Brunauer, S. and Mikhail, R Sh, 1969 Pore structure analysis by water vapor adsorption. I. t-curves for water vapor J. Coll. Interface Sci. 29 485491.CrossRefGoogle Scholar
Harkins, W. D. and Jura, G., 1944 An absolute method for the determination of the area of a finely divided crystalline solid J. Amer. Chem. Soc. 66 13621365.CrossRefGoogle Scholar
Hénin, S., Caillère, S. and Gieseking, J. E., 1975 Fibrous minerals Soil Components Berlin Springer-Verlag 335349.CrossRefGoogle Scholar
Jones, B. F. and Galan, E., 1988 Sepiolite and palygorskite Hydrous Phyllosilicates (Exclusive of Micas) 19 628674.Google Scholar
Lippens, B. C. and de Boer, J. H., 1965 Studies on pore systems in catalysis. V. The t-method J. Catalysis 4 319323.CrossRefGoogle Scholar
McClellan, A. L. and Harnsberger, H. F., 1967 Cross sectional areas of molecules adsorbed on solid surfaces J. Colloid Interface Sci. 23 577599.CrossRefGoogle Scholar
Martin Vivaldi, J. L., Fenoli Hach-Ali, P. and Mackenzie, R. C., 1969 Palygorskite and sepiolite (hormites) Differential Thermal Analysis, Vol. 1, Fundamental Aspects London Academic Press 553572.Google Scholar
Michot, L., François, M. and Cases, J. M., 1990 Continuous volumetric procedure for gas adsorption: A mean to study surface heterogeneity Langmuir 6 677681.CrossRefGoogle Scholar
Mikhail, R Sh Brunauer, S. and Bodor, E. E., 1968 Investigation of a complete pore structure analysis. I. Analysis of micropores J. Colloid Interface Sci. 26 4353.CrossRefGoogle Scholar
Nederbragt, G. W., 1949 Separation of long chain and compact molecules by adsorption on attapulgite containing clays Clay Min. Bull. 3 7275.CrossRefGoogle Scholar
Nederbragt, G. W. and de Jong, J. J., 1946 Theseparation of long chain and compact molecules by adsorption Ree. Trav. Chim. 65 831834.CrossRefGoogle Scholar
Partyka, S., Rouquerol, F. and Rouquerol, J., 1979 Calorimetrie determination of surface areas. Possibilities of a modified Harkins and Jura procedure J. Colloid Interface Sci. 68 2131.CrossRefGoogle Scholar
Poirier, J. E., François, M., Cases, J. M., Rouquerol, F., Athanasios, T. and Laiapis, T., 1987 Study of water adsorption on Na-montmorillonite. New data owing to the use of continuous procedure Fundamentals of Adsorption New York A.I.C.H.E. 472782.Google Scholar
Rautureau, M. and Tchoubar, C., 1976 Structural analysis of sepiolite by selected area electron diffraction. Relations with physicochemical properties Clays and Clay Minerals 24 4349.CrossRefGoogle Scholar
Rautureau, M., Clinard, C., Mifsud, A. and Caillère, S., 1979 Etude microscopique de la palygorskite par microscopie électronique Proc. 104ème Cong. Nat. des Sociétés Savantes 3 199212.Google Scholar
Rouquerol, J., 1970 L’analyse thermique à vitesse de décomposition constante J. Thermal Analysis 2 123140.CrossRefGoogle Scholar
Rouquerol, J., 1972 Calorimetrie d’Adsorption aux Basses Température. I. Thermochimie Paris CNRS Publ..Google Scholar
Rouquerol, J., 1989 Controlled transformation rate thermal analysis: The hidden face of thermal analysis Ther-modynamica Acta 144 209224.CrossRefGoogle Scholar
Rouquerol, J. and Davy, L., 1978 Automatic gravimetric apparatus for recording adsorption isotherms of gases or vapours onto solids Thermodynamica Acta 24 391397.CrossRefGoogle Scholar
Rouquerol, J., Rouquerol, F., Grillet, Y., Torralvo, M. J., Myers, A. L. and Beifort, C., 1984 Influence of the orientation of the nitrogen molecule upon its actual cross-sectional area in the adsorbed monolayer Fundamentals of Adsorption New York Engineering Foundation 501512.Google Scholar
Serna, C., Rautureau, M., Prost, R., Tchoubar, C. and Ser-ratosa, J. M., 1974 Etude de la sepiolite à l’aide des données de la microscopie électronique de l’analyse thermopondérale et de la spectroscopic infra-rouge Bull. Groupe Franc. Argiles 26 153163.CrossRefGoogle Scholar
Serna, C., Ahlrichs, J.L. and Serratosa, J.M., 1975 Folding in sepiolite crystals Clays & Clay Minerals 23 452457.CrossRefGoogle Scholar
Serna, C., Van Scoyoc, C. E., Mortland, M. M. and Farmer, V. C., 1979 Infrared study of sepiolite and palygorskite surfaces Proc. Int. Clay Conf. Oxford, 1978 Amsterdam Elsevier 197206.Google Scholar
Sing, K. S. W., 1967 Assessment of microporosity Chemistry and Industry .Google Scholar
Sing, K. S. W. Everett, D. H., Haul, R. A. W. Moscou, L., Pierotti, R. A., Rouquerol, J. and Siemieniewska, T., 1985 Reporting physisorption data for gas/systems, IUPAC recommendation Pure Appl. Chem. 57 603619.CrossRefGoogle Scholar
van Scoyoc, C. E., Serna, C. and Ahlrichs, J. L., 1979 Structural change in palygorskite during dehydration and dehydroxylation Amer. Mineral. 64 216223.Google Scholar
Yvon, J., Baudracco, J., Cases, J. M., Weiss, J. and Decarreau, A., 1990 Eléments de minéralogie quantitative en micro-analyse des argiles Matériaux Argileux, Structure, Propriétés et Applications Paris SFMC, GFA 473489.Google Scholar