Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T21:28:33.806Z Has data issue: false hasContentIssue false

Effects of Clay Fraction and Temperature on the H2O Self-Diffusivity in Hectorite Gel: A Pulsed-Field-Gradient Spin-Echo Nuclear Magnetic Resonance Study

Published online by Cambridge University Press:  28 February 2024

Yoshito Nakashima*
Affiliation:
Geophysics Department, Geological Survey of Japan, Higashi 1-1-3, Tsukuba, Ibaraki 305-8567, Japan
*
E-mail of corresponding author: yoshito@gsj.go.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Self-diffusion coefficients of H2O molecules in Na-rich hectorite gel were measured by 'H nuclear magnetic resonance (NMR), Spin-echo pulse sequences with magnetic field gradient pulses for the translational diffusion measurement were applied to the hectorite gel at the Larmor frequency of 20 MHz. Effects of clay fraction (0-51.2 wt. %) and temperature (20.0-60.3°C) were studied. The results show: (1) Phenomenologically, the self-diffusion coefficient, D, of 1H2O in the clay gel is expressed by the normalized diffusivity, D/D0 = exp(−0.0257w), where D0 is the water self-diffusivity in bulk water at temperature and w is the weight fraction of the hectorite (wt. %). (2) The activation energy of H2O diffusivity in the hectorite gel is nearly equal to that in bulk water. Hence, the normalized diffusivity, D/D0, obeys a temperature-independent curve. (3) The exponential dependence of D/D0 on w for w <30 wt. % is explained by a random-walk model, in which free or unbound H2O molecules migrate in the geometrically complex and tortuous pore structure of randomly scattered clay-mineral grains.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

References

Anthony, J.W. Bideaux, R.A. Bladh, K.W. and Nichols, M.C., (1995) Handbook of Mineralogy Arizona Mineral Data Publishing, Tucson.Google Scholar
Callaghan, P.T., (1991) Principles of Nuclear Magnetic Resonance Microscopy Oxford Oxford University Press.CrossRefGoogle Scholar
Cebula, D.J. Thomas, R.K. and White, J.W., (1981) Diffusion of water in Li-montmorillonite studied by quasielastic neutron scattering Clays and Clay Minerals 29 241248 10.1346/CCMN.1981.0290401.CrossRefGoogle Scholar
Chang, F-RC Skipper, N.T. and Sposito, G., (1995) Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates Langmuir 11 27342741 10.1021/la00007a064.CrossRefGoogle Scholar
Chang, F-RC Skipper, N.T. and Sposito, G., (1998) Monte Carlo and molecular dynamics simulations of electrical double-layer structure in potassium-montmorillonite hydrates Langmuir 14 12011207 10.1021/la9704720.CrossRefGoogle Scholar
Fripiat, J.J. Letellier, M. and Levitz, P., (1984) Interaction of water with clay surfaces Philosophical Transactions of the Royal Society of London A311 287299 10.1098/rsta.1984.0029.Google Scholar
Hollewand, M.P. and Gladden, L. F., (1995) Transport heterogeneity in porous pellets-I. PGSE NMR studies Chemical Engineering Science 50 309326 10.1016/0009-2509(94)00218-G.CrossRefGoogle Scholar
Holz, M. and Weingärtner, H., (1991) Calibration in accurate spin-echo self-diffusion measurements using’ H and lesscommon nuclei Journal of Magnetic Resonance 92 115125.Google Scholar
Ichikawa, Y. Kawamura, K. Nakano, M. Kitayama, K. and Kawamura, H., (1999) Unified molecular dynamics and homogenization analysis for bentonite behavior: Current results and future possibilities Engineering Geology 54 2131 10.1016/S0013-7952(99)00058-7.CrossRefGoogle Scholar
Johnson, C.S. Jr., Grant, D.M. and Harris, R.K., (1996) Diffusion measurements by magnetic field gradient method Encyclopedia of Nuclear Magnetic Resonance New York John Wiley & Sons 16261644.Google Scholar
Kemper, W.D. Maasland, D.E.L. and Porter, L.K., (1964) Mobility of water adjacent to mineral surfaces Soil Science Society of America Proceedings 28 164167 10.2136/sssaj1964.03615995002800020012x.CrossRefGoogle Scholar
Krynicki, K. Green, C.D. and Sawyer, D.W., (1979) Pressure and temperature dependence of self-diffusion in water Faraday Discussions of the Chemical Society 66 199208 10.1039/dc9786600199.CrossRefGoogle Scholar
Latour, L.L. Mitra, P.P. Kleinberg, R.L. and Sotak, C.H., (1993) Time-dependent diffusion coefficient of fluids in porous media as a probe of surface-to-volume ratio Journal of Magnetic Resonance A101 342346 10.1006/jmra.1993.1056.CrossRefGoogle Scholar
Low, P.F., (1976) Viscosity of interlayer water in montmorillonite Soil Science Society of America Journal 40 500505 10.2136/sssaj1976.03615995004000040017x.CrossRefGoogle Scholar
Low, P.E., (1979) Nature and properties of water in montmorillonite-water systems Soil Science Society of America Journal 43 651658 10.2136/sssaj1979.03615995004300040005x.CrossRefGoogle Scholar
Madsen, F.T., (1998) Clay mineralogical investigations related to nuclear waste disposal Clay Minerals 33 109129 10.1180/000985598545318.CrossRefGoogle Scholar
McBride, M.B., (1994) Mobility of small molecules in interlayers of hectorite gels: ESR study with an uncharged spin probe Clays and Clay Minerals 42 455461 10.1346/CCMN.1994.0420412.CrossRefGoogle Scholar
Mills, R., (1973) Self-diffusion in normal and heavy water in the range 1–45° Journal of Physical Chemistry 77 685688 10.1021/j100624a025.CrossRefGoogle Scholar
Miyahara, K. Ashida, T. Kohara, Y. Yusa, Y. and Sasaki, N., (1991) Effect of bulk density on diffusion for cesium in compacted sodium bentonite Radiochimica Acta 52/53 293297 10.1524/ract.1991.5253.2.293.CrossRefGoogle Scholar
Mokady, R.S. and Low, P.F., (1968) Simultaneous transport of water and salt through clays: I. Transport mechanisms Soil Science 105 112131 10.1097/00010694-196802000-00008.CrossRefGoogle Scholar
Monma, T. Kudo, M. and Masuko, T., (1997) Flow behaviors of smectite/water suspensions in terms of particle-coagulated structures Journal of Clay Science Society of Japan 37 4757 (in Japanese with English abstract).Google Scholar
Nakashima, Y M F Nakashima, S. and Takahashi, M., (1999) Measurement of self-diffusion coefficients of water in smectite by stimulated echo H nuclear magnetic resonance imaging Applied Clay Science 14 5968 10.1016/S0169-1317(98)00049-0.CrossRefGoogle Scholar
Netz, P.A. and Dorfmüller, T., (1997) Computer simulation studies of diffusion in gels: Model structures Journal of Chemical Physics 107 92219233 10.1063/1.475214.CrossRefGoogle Scholar
Pavesi, L. and Balzarini, M., (1996) NMR study of the diffusion process in gels Magnetic Resonance Imaging 14 985987 10.1016/S0730-725X(96)00202-0.CrossRefGoogle ScholarPubMed
Pavesi, L. and Rigamonti, A., (1995) Diffusion constants in polyacrylamide gels Physical Review E 51 33183323 10.1103/PhysRevE.51.3318.CrossRefGoogle ScholarPubMed
Sato, H. Ashida, T. Kohara, Y. Yui, M. and Sasaki, N., (1992) Effect of dry density on diffusion of some radionuclides in compacted sodium bentonite Journal of Nuclear Science and Technology 29 873882 10.1080/18811248.1992.9731607.CrossRefGoogle Scholar
Stejskal, E.O. and Tanner, J.E., (1965) Spin diffusion measurements: Spin echos in the presence of a time-dependent field gradient Journal of Chemical Physics 42 288292 10.1063/1.1695690.CrossRefGoogle Scholar
Trinh, S. Arce, P. and Locke, B.R., (2000) Effective diffu- sivities of point-like molecules in isotropic porous media by Monte Carlo simulation Transport in Porous Media 38 241259 10.1023/A:1006616009669.CrossRefGoogle Scholar
Tuck, J.J. Hall, P.L. and Hayes, M.H., (1985) Quasi-elastic neutron-scattering studies of intercalated molecules in charge-deficient layer silicates: Part 2-High resolution measurements of the diffusion of water in montmorillonite and vermiculite Journal of the Chemical Society Faraday Transactions 1 81 833846 10.1039/f19858100833.CrossRefGoogle Scholar
Yu, J.W. and Neretnieks, I., (1997) Diffusion and sorption properties of radionuclides in compacted bentonite SKB Technical Report (Swedish Nuclear Fuel and Waste Management Co.) 97 198.Google Scholar
Zeng, L. and Stejskal, E.O., (1996) Characterization of a polypropylene/super-absorbent web by NMR diffusion studies Applied Spectroscopy 50 14021407 10.1366/0003702963904845.CrossRefGoogle Scholar