Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T02:03:47.877Z Has data issue: false hasContentIssue false

Dimepiperate Adsorption and Hydrolysis on Al3+-, Fe3+-, Ca2+-, and Na+-Montmorillonite

Published online by Cambridge University Press:  28 February 2024

A. Pusino
Affiliation:
Istituto di Chimica Agraria e Forestale, Università di Reggio Calabria, Piazza San Francesco di Sales 4, 89061, Gallina (RC), Italy
W. Liu
Affiliation:
Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
C. Gessa
Affiliation:
Istituto di Chimica Agraria, Università di Bologna, Via Berti Pichat 11, 40127 Bologna, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The adsorption of the herbicide dimepiperate S-(α;α-dimethylbenzyl)-1-piperidinecarbothioate on homoionic Fe3+-, Al3+-, Ca2+-, and Na+-montmorillonite was studied in aqueous medium. The adsorption is described well by the Freundlich equation. The adsorption capacity decreases in the order Fe3+ > Al3+ > Ca2+ > Na+ clay. The dimepiperate adsorption from chloroform solution was also investigated by analytical, spectroscopic, and X-ray powder diffraction techniques. IR results suggest that the adsorption involves the interaction of the thioester carbonyl group of dimepiperate possibly with the surrounding water of metal ions. On Al3+ and Fe3+ clays, this interaction leads to hydrolysis of the thioester bond and formation of the thiol and carbamic acid derivatives that yield α-methylstyrene and piperidine, respectively.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

References

Antonelli, C., Castagna, G. and Domenichini, P., 1986 II dimepiperate: nuovo erbicida per il diserbo del riso, efficace contro il giavone (Eschinocloa crus-galli) Atti Giornate Fitopatologiche 3 327 36.Google Scholar
Bellamy, L. J., 1975 The Infrared Spectra of Complex Molecules London Chapman and Hall 231243.CrossRefGoogle Scholar
Chiou, C. T. Peters, L. J. and Freed, V. H., 1979 Aphysical concept of soil-water equilibria for nonionic organic compounds Science 206 831832 10.1126/science.206.4420.831.CrossRefGoogle Scholar
Crosby, D. G. and Andus, L. J., 1976 Non biological degradation of herbicides in the soil Herbicides, Vol. 2 London Academic Press 6597.Google Scholar
Fusi, P., Pvistori, G. G. and Bosetto, M., 1988 Interaction of fluazifop-butyl and fluazifop with smectites Appl. Clay Science 3 6373 10.1016/0169-1317(88)90006-3.CrossRefGoogle Scholar
Gessa, C., Pusino, A., Solinas, V. and Petretto, S., 1987 Interaction of fluazifop-butyl with homoionic clays Soil Sci. 144 420424 10.1097/00010694-198712000-00006.CrossRefGoogle Scholar
Giles, C. H., McEwan, J. H., Nakhwa, S. N. and Smith, D., 1960 Studies in adsorption. XI. A system of classification of solution adsorption isotherms and its use in diagnosis of adsorption mechanisms and in measurements of specific areas of soils J. Chem. Soc. 39733993.CrossRefGoogle Scholar
Hendershot, W. H. and Duquette, M., 1986 A simple barium chloride method for determining cation exchange capacity and exchangeable cations Soil Sci. Soc. J. Amer. 50 605608 10.2136/sssaj1986.03615995005000030013x.CrossRefGoogle Scholar
Ikeda, K., 1982 Herbicidal property of a thiolcarbamate herbicide MY-93 Shokubutsu no Kagaku Chosetsu 17 163 9.Google Scholar
Micera, G., Pusino, A., Gessa, C. and Petretto, S., 1988 Interaction of fluazifop with Al-, Fe3+-, and Cu2+-saturated montmorillonite Clays & Clay Minerals 36 354358 10.1346/CCMN.1988.0360410.CrossRefGoogle Scholar
Mortland, M. M., 1970 Clay organic-complex and interactions Adv. Agron. 22 75115 10.1016/S0065-2113(08)60266-7.CrossRefGoogle Scholar
Mortland, M. M. and Bailey, S. W., 1976 Interactions between clays and organic pollutants Proc. Inter. Conf. Mexico City, 1975 Wilmette, Illinois Applied Publishing 469 175.Google Scholar
Pusino, A. and Gessa, C., 1990 Catalytic hydrolysis of diclofop-methyl on Ca-, Na- and K-montmorillonite Pestic. Sci. 30 211216 10.1002/ps.2780300208.CrossRefGoogle Scholar
Pusino, A., Gessa, C. and Kozlowski, H., 1988 Catalytic hydrolysis of quinalphos on homoionic clays Pestic. Sci. 24 18 10.1002/ps.2780240102.CrossRefGoogle Scholar
Pusino, A., Micera, G., Gessa, C. and Petretto, S., 1989 Interaction of diclofop and diclofop-methyl with Al3+-, Fe3+-, and Cu2+-saturated montmorillonite Clays & Clay Minerals 37 558562 10.1346/CCMN.1989.0370609.CrossRefGoogle Scholar
Sánchez-Camazano, M. and Sánchez-Martín, M. J., 1991 Hydrolysis of azinphosmethyl induced by the surface of smectites Clays & Clay Minerals 39 609613 10.1346/CCMN.1991.0390606.CrossRefGoogle Scholar
Senesi, N. and Testini, C., 1982 Physico-chemical investigations of interaction mechanisms between s-triazine herbicides and soil humic acids Geoderma 28 314468 10.1016/0016-7061(82)90014-3.CrossRefGoogle Scholar
Senesi, N. and Testini, C., 1984 Theoretical aspects and experimental evidence of the capacity of humic substances to bind herbicide by charge-transfer mechanism Chemosphere 13 461468 10.1016/0045-6535(84)90104-8.CrossRefGoogle Scholar
Tanaka, M., 1984 Dimepiperate (Yucamate, MY-93)anew herbicide for rice Jpn. Pestic. Inf. 45 1820.Google Scholar