Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T05:02:22.589Z Has data issue: false hasContentIssue false

Determination of Surface Free Energy of Kaolinite

Published online by Cambridge University Press:  02 April 2024

Emil Chibowski
Affiliation:
Department of Physical Chemistry, Institute of Chemistry, Maria Curie-Skłodowska University, M. Curie-Słodowska Sq. 3, 20-031 Lublin, Poland
Piotr Staszczuk
Affiliation:
Department of Physical Chemistry, Institute of Chemistry, Maria Curie-Skłodowska University, M. Curie-Słodowska Sq. 3, 20-031 Lublin, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The adsorption of n-octane and water vapor on natural kaolinite was measured. From adsorption isotherms film pressures were determined which were then used to calculate the dispersion and nondispersion components of the kaolinite surface free energy. In addition, thermodesorption of water from the kaolinite surface was determined. These results suggest that physically adsorbed water remained on the kaolinite surface, even at temperatures as great as 125°C. Therefore, experimentally determined dispersion and nondispersion components appear to relate to the surface precovered with a film of water. These values are: γSf(w)d = 34.4 mJ/m2 for dispersion interactions and γSf(w)n = 60.2 mJ/m2 for nondispersion interactions. Assuming a kaolinite surface precovered with a film of water, which decreased the free energy by the work of spreading, the following components of the energy for the bare surface were calculated: γSd = 67.6 mJ/m2 and γSn = 103.4 mJ/m2, for dispersion and nondispersion components, respectively.

Zmierzono adsorpcję pary wodnej i n-oktanu na naturalnym kaolinicie. Z uzyskanych izoterm adsorpcji wyznaczono ciśnienia filmów i następnie składową dyspersyjną i niedyspersyjną swobodnej energii powierzchniowej kaolinitu. Prócz tego, zbadano także termodesorpcję wody z powierzchni kaolinitu. Z tych doświadczeń wynika, że woda zaadsorbowana fizycznie pozostaje na powierzchni kaolinitu nawet do 125°C. Dlatego, sugeruje się, że wyznaczona doświadczalnie składowa dyspersyjna i niedyspersyjna dotyczy powierzchni pokrytej filmem wody. Wyznaczone wartości wynoszą: γsf(w)d = 34.4 mj/m2 dla oddziaływań dyspersyjnych i γsf(w)n = 60.2 mJ/m2 dla oddziaływań niedyspersyjnych. Przyjmując model, w którym film wody na powierzchni kaolinitu obniża jego swobodną energię o pracę rozpływania, wyliczono składowe tej energii dla czystej powierzchni kaolinitu. Składowe te wynoszą: γsd = 67.6 mj/m2 i γsd = 103.4 mj/m2.

Type
Research Article
Copyright
Copyright © 1988, The Clay Minerals Society

References

Boruvka, L., Rotengerg, Y. and Neumann, A. W., 1985 Free energy formulation of the theory of capillarity Langmuir 1 4044.CrossRefGoogle Scholar
Chibowski, E., Biliński, B., Waksmundzki, A. and Wójcik, W., 1982 Confrontation of energetic changes in sulfur/n-alkane-water and sulfur/n-alkane-vapour systems J. Colloid Interface Sci. 86 559566.CrossRefGoogle Scholar
Chibowski, E. and Holysz, L., 1986 Correlation of surface free energy changes and notability of quartz J. Colloid Interface Sci. 112 1523.CrossRefGoogle Scholar
Dekany, L., Szántó, F. and Nagy, L. G., 1986 Sorption of immersional wetting on clay minerals having modified surface. II. Interlamellar sorption and wetting on organic montmorillonites J. Colloid Interface Sci. 109 376384.CrossRefGoogle Scholar
Dekany, I., Szántó, F. and Rudziński, W., 1983 Effect of surface modification on immersional wetting of organic kaolinite and illite derivatives Acta Chim. Hung. 114 283292.Google Scholar
Delgado, A., Gonzalez-Caballero, F. and Bruque, J. M., 1986 On the electrophoretic mobility and zeta potential of montmorillonite in non-aqueous media Colloid and Polymer Sci. 264 435438.CrossRefGoogle Scholar
Delgado, A., Gonzalez-Caballero, F. and Bruque, J. M., 1986 On the zeta potential and surface charge of montmorillonite in aqueous electrolyte solutions J. Colloid Interface Sci. 113 203211.CrossRefGoogle Scholar
Fowkes, F. M., 1964 Attractive forces at interface Ind. Eng. Chem. 56 4052.CrossRefGoogle Scholar
Fowkes, F. M., 1968 Calculation of work of adhesion by pair potential summation J. Colloid Interface Sci. 28 493505.CrossRefGoogle Scholar
Girifalco, L. A. and Good, R. J., 1957 A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension J. Phys. Chem. 61 904909.CrossRefGoogle Scholar
Harkins, W. D., 1952 The Physical Chemistry of Surface Films New York Reinhold.Google Scholar
Jackson, B. L. J. Metcalfe, A. and Wilcock, R. J., 1971 Adsorption hysteresis on disordered kaolinite Trans. Faraday Soc. 67 21372144.CrossRefGoogle Scholar
Jańczuk, B. and Białopiotrowicz, T., 1988 Components of surface free energy of some clay minerals Clays & Clay Minerals 36 243248.CrossRefGoogle Scholar
Jańczuk, B., Chibowski, E. and Staszczuk, P., 1983 Determination of surface free energy components of marble J. Colloid Interface Sci. 96 16.CrossRefGoogle Scholar
Jurinak, J. J., 1961 The effect of pretreatment on the adsorption and desorption of water by lithium and calcium kaolinite J. Phys. Chem. 65 6265.CrossRefGoogle Scholar
Lagaly, G., Witter, R., Sander, H., Ottewill, R. H., Rochester, C. H. and Smith, A. L., 1983 Water on hydrophobic surfaces Adsorption from Solutions London Academic Press.Google Scholar
Low, P. F., 1961 Physical chemistry of clay-water interaction Advances in Agronomy 13 269327.CrossRefGoogle Scholar
Low, P. F., 1979 Nature and properties of water in montmorillonite-water systems Soil Sci. Soc. Amer. J. 43 651658.CrossRefGoogle Scholar
Low, P. F., 1982 Water in clay-water systems Agronomie 2 909914.CrossRefGoogle Scholar
Low, P. F., 1987 Structural component of the swelling pressure of clays Langmuir 3 1825.CrossRefGoogle Scholar
Malcolm, B. R., Danielli, J. F., Rosenberg, M. D. and Cadenhead, D. A., 1973 The structure and properties of monolayers of synthetic polypeptides at the air-water interface Progress in Surface and Membrane Science New York Academic Press 183229.Google Scholar
Mittal, K. L., 1976 Adhesion Science and Technology, Vol. 9A New York Plenum Press.Google Scholar
Mulla, D. J. and Low, P. F., 1983 The molar absorptive of interparticle water in clay-water systems J. Colloid Interface Sci. 95 5160.CrossRefGoogle Scholar
Murray, R. S. and Quirk, J. P., 1980 Clay-water interactions and the mechanism of soil swelling Colloids and Surfaces 1 1732.CrossRefGoogle Scholar
Official J. Int. Union PureAppl. Chem., 1972 Manual of Symbols and Terminology for Physicochemical Quantities and Units 31 579653.Google Scholar
Oliphant, J. L. and Low, P. F., 1982 The relative partial specific enthalpy of water in montmorillonite-water systems and its relation to the swelling of these systems J. Colloid Interface Sci. 89 366373.CrossRefGoogle Scholar
Oliphant, J. L. and Low, P. F., 1983 The isothermal compressibility of water mixed with Na-saturated montmorillonite J. Colloid Interface Sci. 95 4550.CrossRefGoogle Scholar
Papirer, E., Roland, P., Nardin, M. and Balard, H., 1986 Variation of the surface energy characteristics of mica muscovite upon grinding J. Colloid Interface Sci. 113 6266.CrossRefGoogle Scholar
Paulik, J., Paulik, F. and Svehla, G., 1981 Simultaneous thermoanalytical examinations by means of the derivatograph Comprehensive Analytical Chemistry Amsterdam Elsevier 1734.Google Scholar
Schultz, J., Tsutsumi, K. and Dounet, J.-B., 1977 Surface properties of high-energy solids. I. Determination of the dispersive component of the surface free energy of mica and its energy of adhesion to water and n-alkanes J. Colloid Interface Sci. 59 272276.CrossRefGoogle Scholar
Schultz, J., Tsutsumi, K. and Dounet, J.-B., 1977 Surface properties of high-energy solids. II. Determination of the nondispersive component of the surface free energy of mica and its energy of adhesion to polar liquids J. Colloid Interface Sci. 59 277282.CrossRefGoogle Scholar
Siracusa, P. A. and Somasundaran, P., 1986 Adsorptiondesorption and histeresis of sulfonates on kaolinite: pH effects J. Colloid Interface Sci. 114 184193.CrossRefGoogle Scholar
Staszczuk, P., 1984 Application of thermal analysis for determination of film pressure and film surface energy on silica gel surface J. Thermal Analysis 29 217225.CrossRefGoogle Scholar
Staszczuk, P., 1985 Determination of liquid vapour adsorption and desorption on and from solids by means of the derivatograph. Part I. Derivatograph for measurements of adsorption and desorption at a constant temperature J. Thermal Analysis 30 11151119.CrossRefGoogle Scholar
Staszczuk, P., 1986 Determination of liquid vapour adsorption and desorption on and from solids by means of the derivatograph. Part II. Determination of kinetics and isotherm of adsorption and desorption of water vapour on silica gel J. Thermal Analysis 31 911916.CrossRefGoogle Scholar
Staszczuk, P., 1986 Determination of liquid vapour adsorption and desorption on and from solids by means of the derivatograph. Part III. Determination of water adsorption and desorption heats on silica gel by derivatographic measurements J. Thermal Analysis 31 10551061.CrossRefGoogle Scholar
Swartzen-Allen, S. L. and Matijević, E., 1974 Surface and colloid chemistry of clays Chemical Reviews 74 385400.CrossRefGoogle Scholar
Szántó, F., Dekany, I., Patzko, A. and Varkonyi, B., 1986 Wetting, swelling and sediment volumens of organophilic clays Colloids and Surfaces 18 359371.CrossRefGoogle Scholar
Tamai, Y., Makuuchi, K. and Suzuki, M., 1967 Experimental analysis of interfacial forces at the plane surface of solids J. Phys. Chem. 71 41764179.CrossRefGoogle Scholar
Viani, B. E., Low, P. F. and Roth, C. B., 1983 Direct measurement of the relation between interlayer force and interlayer distance in the swelling of montmorillonite J. Colloid Interface Sci. 96 229244.CrossRefGoogle Scholar
Viani, B. E., Roth, C. B. and Low, P. F., 1985 Direct measurement of the relation between swelling pressure and interlayer distance in Li-vermiculite Clays & Clay Minerals 33 244250.CrossRefGoogle Scholar
Wu, S., Paul, D. R. and Newmann, S., 1978 Interfacial energy, structure, and adhesion between polymers Polymer Blends New York Academic Press 243293.CrossRefGoogle Scholar
Wu, S. and Lee, L.-H., 1980 Surface tension of solids: Generalization and reinterpretation of critical surface tension Adhesion and Adsorption of Polymers New York Plenum Press.Google Scholar
Zettlemoyer, A. C. and Fowkes, F. M., 1969 Hydrophobic surfaces Hydrophobic Surfaces New York Academic Press.CrossRefGoogle Scholar