Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T02:56:17.060Z Has data issue: false hasContentIssue false

Determination of Mean Crystallite Dimensions from X-Ray Diffraction Peak Profiles: A Comparative Analysis of Synthetic Hematites

Published online by Cambridge University Press:  28 February 2024

Mario Crosa
Affiliation:
Dipartimento di Valorizzazione e Protezione delle Risorse Agroforestali-Chimica Agraria, Università di Torino, via Leonardo da Vinci 44, I-10095 Grugliasco (Torino), Italy
Valter Boero*
Affiliation:
Dipartimento di Valorizzazione e Protezione delle Risorse Agroforestali-Chimica Agraria, Università di Torino, via Leonardo da Vinci 44, I-10095 Grugliasco (Torino), Italy
Marinella Franchini-Angela
Affiliation:
Dipartimento di Scienze Mineralogiche e Petrologiche, Università di Torino, via Valperga Caluso 35, 1-10125 Torino, Italy
*
E-mail of corresponding author: boero@agraria.unito.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

X-ray diffraction (XRD) profile analysis of eight synthetic hematite samples was performed to identify the best parameters for determining the apparent mean crystallite dimension (D) and, consequently, surface area, The samples are comparable to soil hematite with respect to crystallinity. The procedure included: a) deconvolution of the XRD peaks to Gauss and Cauchy components and subtraction of the instrumental profile, b) determination of D from full-width at half-maximum, integral breadth, and integral breadth measurements of the Cauchy component, and c) comparison of deduced surface areas with those obtained by the N2-BET adsorption method. As expected, D values are strongly influenced by the broadening parameters. An appropriate selection of peaks is required to obtain size values along the crystallographic axes a (hkl: 110,300) and c (hkl: 104, 116) and to calculate reliable surface areas. Using the Cauchy component of the above peaks, the calculated surface areas compared well with those measured by the N2-BET adsorption method.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Benedetti, A. Fagherazzi, G. Enzo, S. and Battagliarin, M., 1988 A profile fitting procedure for analysis of broadened X-ray diffraction peaks. II. Application and discussion of methodology Journal of Applied Crystallography 21 543549 10.1107/S0021889888006624.CrossRefGoogle Scholar
Borggaard, O.R., 1990 Dissolution and Adsorption Properties of Soil Iron Oxides .Google Scholar
Colombo, C. Barron, V. and Torrent, J., 1994 Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites Geochimica et Cosmochimica Acta 58 12611269 10.1016/0016-7037(94)90380-8.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., 1996 The Iron Oxides Weinheim, Germany Verlagsgesellschaft.Google Scholar
Crosa, M., 1996 Ottimizzazione dell’analisi dei profili XRD per la misura delle dimensioni medie dei cristalli di ematite e goethite, Ph.D. thesis .Google Scholar
deKeijser, T.h.H. Langford, J.I. Mittemeijer, E.J. and Vogel, A., 1982 Use of the Voigt function in a single-peak method for the analysis of X-ray diffraction peak broadening Journal of Applied Crystallography 15 308314 10.1107/S0021889882012035.CrossRefGoogle Scholar
Enzo, S. Polizzi, S. and Benedetti, A., 1985 Applications of fitting techniques to the Warren-Averbach method for X-ray peak broadening analysis Zeitschrift für Kristallographie 170 275287 10.1524/zkri.1985.170.1-4.275.CrossRefGoogle Scholar
Guerin, D.M.A. and Alvarez, A.G., 1995 A survey on the determination of crystal size in powder diffractometry Crystallography Review 4 261281 10.1080/08893119508039924.CrossRefGoogle Scholar
Hartmann, P., 1973 Introduction to Crystal Growth Amsterdam North Holland.Google Scholar
Howard, S.A. Preston, K.D., Bish, D.L. and Post, J.E., 1989 Profile fitting of powder diffraction patterns Modern Powder Diffraction, Reviews in Mineralogy, Volume 20 Washington, D.C. Mineralogical Society of America 217275 10.1515/9781501509018-011.CrossRefGoogle Scholar
Jones, R.C., 1981 X-ray diffraction peak profile analysis versus phosphorus sorption by eleven Puerto Rican soils Soil Science Society of America Journal 45 818825 10.2136/sssaj1981.03615995004500040030x.CrossRefGoogle Scholar
Klug, H.P. and Alexander, L.E., 1974 X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edition New York Wiley and Sons.Google Scholar
Langford, J.I. and Wilson, A.J.C., 1978 Scherrer after sixty years: A survey and some new results in the determination of crystallite size Journal of Applied Crystallography 11 102113 10.1107/S0021889878012844.CrossRefGoogle Scholar
Langford, J.I. Delhez, R. deKeijser, T.h.H. and Mittemeijer, E.J., 1987 Profile analysis for microcrystal peak properties by the Fourier and other methods Australian Journal of Physics 41 173187 10.1071/PH880173.CrossRefGoogle Scholar
Schwertmann, U., Stucki, J.W. Goodman, B.A. and Schwertmann, U., 1987 Some properties of soil and synthetic iron oxides Iron in Soil and Clay Minerals 203250.CrossRefGoogle Scholar
Schwertmann, U. and Cornell, R.M., 1991 Iron Oxides in the Laboratory: Preparation and Characterization Weinheim, Germany Verlagsgesellschaft.Google Scholar
Schwertmann, U. and Latham, M., 1986 Properties of iron oxides in some New Caledonian oxisols Geoderma 39 105123 10.1016/0016-7061(86)90070-4.CrossRefGoogle Scholar
Schwertmann, U. Taylor, R.M., Dixon, J.B. and Weed, S.B., 1989 Iron Oxides Minerals in Soil Environments, 2nd edition 379438.CrossRefGoogle Scholar
Schwertmann, U. Kodama, H. Fischer, W.R., Huang, P.M. and Schnitzer, M., 1986 Mutual interactions between organics and iron oxides Interactions of Soils Minerals with Natural Organics and Microbes 223250.CrossRefGoogle Scholar
Stanjek, H., 1991 Aluminium- und Hydroxylsubstitution in synthetischen und natürlichen Hämatite .Google Scholar
Torrent, J. Schwertmann, U. Fechter, H. and Alférez, F., 1983 Quantitative relationship between soil colour and hematite content Soil Science 136 354358 10.1097/00010694-198312000-00004.CrossRefGoogle Scholar
Torrent, J. Schwertmann, U. and Barron, V., 1987 The reductive dissolution of synthetic goethite and hematite in difhionite Clay Minerals 22 329337 10.1180/claymin.1987.022.3.07.CrossRefGoogle Scholar
Torrent, J. Schwertmann, U. and Barron, V., 1994 Phosphate sorption by natural hematites European Journal of Soil Science 45 4551 10.1111/j.1365-2389.1994.tb00485.x.CrossRefGoogle Scholar
Wilson, A.J.C., 1949 X-ray Optics London Metuen and Co. Ltd..Google Scholar