Hostname: page-component-54dcc4c588-42vt5 Total loading time: 0 Render date: 2025-09-19T11:01:28.676Z Has data issue: false hasContentIssue false

A Comparison of the Adsorption of Cesium on Zeolite Minerals vs Vermiculite

Published online by Cambridge University Press:  01 January 2024

D. R. Ferreira*
Affiliation:
Department of Ecology, Evolution, and Organismal Biology, Kennesaw State University, 370 Paulding Avenue, Kennesaw, GA 30144, USA
G. D. Phillips
Affiliation:
Department of Chemistry and Biochemistry, Kennesaw State University, 370 Paulding Avenue, Kennesaw, GA 30144, USA
B. Baruah
Affiliation:
Department of Chemistry and Biochemistry, Kennesaw State University, 370 Paulding Avenue, Kennesaw, GA 30144, USA
*
*E-mail address of corresponding author: dferreira@kennesaw.edu

Abstract

Radiocesium was deposited on the soils of Fukushima Prefecture in Japan after the meltdown of the Fukushima Daiichi Nuclear Power Plant in 2011. The radiocesium bound to 2:1 clay minerals, such as vermiculite, common in the soil of that region and became non-exchangeable due to the strong affinity of these clay minerals for the Cs+ adsorbed. The current study generated adsorption envelopes for Cs+ on three zeolite minerals: zeolite Y, ZSM-5, and ferrierite. Two of these (ZSM-5 and ferrierite) caused monovalent cations to adsorb via a strong inner-sphere mechanism. A comparison of Cs+ adsorption on these zeolites to Na+ adsorption on the same zeolites showed that Cs+ adsorbs much more strongly than Na+, which is explained by its atomic properties. Despite the inner-sphere adsorption of Cs+ on ZSM-5 and ferrierite, the affinity of vermiculite for Cs+ is even stronger. An adsorption envelope for Cs+ on vermiculite failed to show a low-pH adsorption edge even at a pH of 1.01, with adsorption remaining at ~65% of the maximum even at this low pH. The adsorption envelopes for Cs+ on ZSM-5 and ferrierite minerals did show low-pH adsorption edges centered at pH 3.5 and 3.0, respectively, where Cs+ adsorption dropped to zero. The greater affinity of vermiculite for Cs+, even when compared with that for two zeolite minerals known to have significant affinities for monovalent ions, highlights the difficulty in removing Cs+ from contaminated Fukushima soils.

Information

Type
Article
Copyright
Copyright © Clay Minerals Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akalin, H. A., Hiçsönmez, U., & Yilmaz, H. (2018). Removal of cesium from aqueous solution by adsorption onto Sivas-Yildizeli (Türkiye) vermiculite: Equilibrium, kinetic and thermodynamic studies. Journal of the Turkish Chemical Society, 5(1), 85116.Google Scholar
Arai, Y., & Sparks, D. L. (2001). ATR–FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite–water interface. Journal of Colloid and Interface Science, 241(2), 317326.CrossRefGoogle Scholar
Baek, W., Ha, S., Hong, S., Kim, S., & Kim, Y. (2018). Cation exchange of cesium and cation selectivity of natural zeolites: Chabazite, stilbite, and heulandite. Microporous and Mesoporous Materials, 264, 159166.CrossRefGoogle Scholar
Baerlocher, C. & McCusker, L.B. (2020). Database of zeolite structures. https://america.iza-structure.org/IZA-SC/ftc_table.php (accessed 23 September 2020).Google Scholar
Bostick, B. C., Vairavamurthy, M. A., Karthikeyan, K. G., & Chorover, J. (2002). Cesium adsorption on clay minerals: An EXAFS spectroscopic investigation. Environmental Science and Technology, 36, 26702676.CrossRefGoogle ScholarPubMed
Cabrera, F., Madrid, L., & De Arambarri, P. (1977). Adsorption of phosphate by various oxides: Theoretical treatment of the adsorption envelope. European Journal of Soil Science, 28, 306313.CrossRefGoogle Scholar
Coleman, N. T., Craig, D., & Lewis, R. J. (1963). Ion-exchange reactions of cesium. Soil Science Society of America Journal, 27, 287289.CrossRefGoogle Scholar
Comans, R. N. J., & Hockley, D.E. (1992). Kinetics of cesium sorption on illite. Geochimica et Cosmochimica Acta, 56, 11571164.CrossRefGoogle Scholar
Dolcater, D. L., Jackson, M. L., & Syers, J. K. (1972). Cation exchange selectivity in mica and vermiculite. American Mineralogist, 57, 18231831.Google Scholar
Dzene, L., Tertre, E., Hubert, F., & Ferrage, E. (2015). Nature of the sites involved in the process of cesium desorption from vermiculite. Journal of Colloid and Interface Science, 455, 254260.CrossRefGoogle ScholarPubMed
Ferreira, D. R., & Schulthess, C. P. (2011). The Nanopore inner-sphere enhancement (NISE) effect: Sodium, potassium, and calcium. Soil Science Society of America Journal, 75(2), 389396.CrossRefGoogle Scholar
Ferreira, D. R., Schulthess, C. P., & Giotto, M. V. (2012). An investigation of strong sodium retention mechanisms in nanopore environments using nuclear magnetic resonance spectroscopy. Environmental Science and Technology, 46, 300306.CrossRefGoogle ScholarPubMed
Ferreira, D. R., Schulthess, C. P., & Kabengi, N. J. (2013). Calorimetric evidence in support of the nanopore inner-sphere enhancement (NISE) theory on cation adsorption. Soil Science Society of America Journal, 77, 9499.CrossRefGoogle Scholar
Ferreira, D. R., Thornhill, J. A., Roderick, E.I. N., & Li, Y. (2018). The impact of pH and ion exchange on 133Cs adsorption on vermiculite. Journal of Environmental Quality, 47(6), 13651370.CrossRefGoogle ScholarPubMed
Flanagan, D.M. & Crangle, R.D. Jr (2017). Zeolites in metals and minerals: U.S. Geological Survey minerals yearbook, 1, pp. 84.184.4. https://www.usgs.gov/centers/nmic/minerals-yearbook-metals-and-minerals.Google Scholar
Fuji, K., Ikeda, S., Akama, A., Komatsu, M., Takahashi, M., & Kaneko, S. (2014). Vertical migration of radiocesium and clay mineral composition in five forest soils contaminated by the Fukushima nuclear accident. Soil Science and Plant Nutrition, 60, 751764.CrossRefGoogle Scholar
Fuller, A. J., Shaw, S., Ward, M. B., Haigh, S.J., Mosselmans, J. F. W., Peacock, C. L., Stackhouse, S., Dent, A. J., Trivedi, D., & Burke, I. T. (2015). Caesium incorporation and retention in illite interlayers. Applied Clay Science, 108, 128134.CrossRefGoogle Scholar
Gaines, G. L. Jr. (1957). The ion-exchange properties of muscovite mica. Journal of Physical Chemistry, 61(10), 14081412.CrossRefGoogle Scholar
Groenewold, G. S., Ingram, J. C., McLing, T., Gianotto, A. K., & Avci, R. (1998). Cs+ speciation on soil particles by TOF-SIMS imaging. Analytical Chemistry, 70(3), 534539.CrossRefGoogle ScholarPubMed
Huang, X., Hu, S., Wang, F., Liu, Y., & Mu, Y. (2017). Properties of alkali-activated slag with addition of cation exchange material. Construction and Building Materials, 146, 321328.CrossRefGoogle Scholar
Iijima, K., Tomura, T., & Shoji, Y. (2010). Reversibility and modeling of adsorption behavior of cesium ions on colloidal montmorillonite particles. Applied Clay Science, 49, 262268.CrossRefGoogle Scholar
Johan, E., Yamada, T., Munthali, M. W., Kabwadza-Corner, P., Aono, H., & Matsue, N. (2015). Natural zeolites as potential materials for decontamination of radioactive cesium. Procedia Environmental Sciences, 28, 5256.CrossRefGoogle Scholar
Kogure, T., Morimoto, K., Tamura, K., Sato, H., & Yamagishi, A. (2012). XRD and HRTEM evidence for fixation of cesium ions in vermiculite clay. Chemistry Letters, 41, 380382.CrossRefGoogle Scholar
Lafferty, B. J., & Loeppert, R. H. (2005). Methyl arsenic adsorption and desorption behavior on iron oxides. Environmental Science and Technology, 39(7), 21202127.CrossRefGoogle ScholarPubMed
Lee, H. A., Kim, H. S., Jeong, H. K., Park, M., Chung, D. Y., Lee, K.-Y., Lee, E. H., & Kim, W. T. (2017). Selective removal of radioactive cesium from nuclear waste by zeolites: On the origin of cesium selectivity revealed by systematic crystallographic studies. The Journal of Physical Chemistry C, 121(19), 1059410608.CrossRefGoogle Scholar
Lomenick, T. F., & Tamura, T. (1965). Naturally occurring fixation of cesium-137 on sediments of lacustrine origin. Soil Science Society of America Journal, 29(4), 383387.CrossRefGoogle Scholar
Manning, B. A., & Goldberg, S. (1996). Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Science Society Of America Journal, 60, 121131.CrossRefGoogle Scholar
Martin, H. W., & Sparks, D. L. (1985). On the behavior of nonexchangeable potassium in soils. Communications in Soil Science and Plant Analysis, 16, 133162.CrossRefGoogle Scholar
McKenzie, R. M. (1983). The adsorption of molybdenum on oxide surfaces. Australian Journal of Soil Research, 21(4), 505513.CrossRefGoogle Scholar
Mimura, H., & Kanno, T. (1985). Distribution and fixation of cesium and strontium in zeolite A and chabazite. Journal of Nuclear Science and Technology, 22(4), 284291.CrossRefGoogle Scholar
Mimura, H., Tachibana, F., & Akiba, K. (1992a). Breakthrough properties of cesium in columns of ferrierites. Journal of Nuclear Science and Technology, 29(1), 7885.CrossRefGoogle Scholar
Mimura, H., Tachibana, F., & Akiba, K. (1992b). Ion-exchange selectivity for cesium in ferrierites. Journal of Nuclear Science and Technology, 29(2), 184186.CrossRefGoogle Scholar
Missana, T., Garcia-Gutierrez, M., & Alonso, U. (2004). Kinetics and irreversibility of cesium and uranium sorption onto bentonite colloids in a deep granitic environment. Applied Clay Science, 26, 137150.CrossRefGoogle Scholar
Okumura, M., Nakamura, H., & Machida, M. (2013). Mechanism of strong affinity of clay minerals to radioactive cesium: First-principles calculation study for adsorption of cesium at frayed edge sites in muscovite. Journal of the Physical Society of Japan, 82(3), 033802033802-5.CrossRefGoogle Scholar
Osman, M. A., Caseri, W. R., & Suter, U. W. (1998). H+/Li+ and H+/K+ exchange on delaminated muscovite mica. Journal of Colloid and Interface Science, 198(1), 157163.CrossRefGoogle Scholar
Osman, M. A., Moor, C., Caseri, W. R., & Suter, U. W. (1999). Alkali metals ion exchange on muscovite mica. Journal of Colloid and Interface Science, 209(1), 232239.CrossRefGoogle ScholarPubMed
Pal, D. K., & Durge, S. L. (1989). Release and adsorption of potassium in some benchmark alluvial soils of India in relation to their mineralogy. Pedologie, 39(3), 235248.Google Scholar
Perkins, H. F., & Tan, K. H. (1973). Potassium fixation and reconstitution of micaceous structures in soils. Soil Science, 116(1), 3135.Google Scholar
Pulido, A., Nachtigall, P., Zukal, A., Domínguez, I., & Čejka, J. (2009). Adsorption of CO2 on sodium-exchanged ferrierites: The bridged CO2 complexes formed between two extraframework cations. The Journal of Physical Chemistry C, 113, 29282935.CrossRefGoogle Scholar
Raven, K. P., Jain, A., & Loeppert, R. H. (1998). Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environmental Science and Technology, 32(3), 344349.CrossRefGoogle Scholar
Rudziński, W., Narkiewicz-Michalek, J., Szabelski, P., & Chiang, A. S. T. (1997). Adsorption of aromatics in zeolites ZSM-5: A thermodynamic-calorimetric study based on the model of adsorption on heterogeneous adsorption sites. Langmuir, 13, 10951103.CrossRefGoogle Scholar
Sato, K., Fujimoto, K., Dai, W., & Hunger, M. (2013). Molecular mechanism of heavily adhesive Cs: Why radioactive Cs is not decontaminated from soil. Journal of Physical Chemistry C, 117(27), 1407514080.CrossRefGoogle Scholar
Sawhney, B. L. (1964). Sorption and fixation of microquantities of cesium by clay minerals: Effects of saturating cations. Soil Science Society of America Journal, 28(2), 183186.CrossRefGoogle Scholar
Sawhney, B. L. (1972). Selective sorption and fixation of cations by clay minerals: A review. Clays and Clay Minerals, 20, 93100.CrossRefGoogle Scholar
Schulthess, C. P., & Huang, C. P. (1991). Humic and fulvic acid adsorption by silicon and aluminum oxide surfaces on clay minerals. Soil Science Society of America Journal, 55(1), 3442.CrossRefGoogle Scholar
Schulthess, C. P. (2005). Soil chemistry with applied mathematics. Trafford Publ.Google Scholar
Schulthess, C. P., Taylor, R. W., & Ferreira, D. R. (2011). The Nanopore inner sphere enhancement effect on cation adsorption: Sodium and nickel. Soil Science Society of America Journal, 75(2), 378388.CrossRefGoogle Scholar
Seliman, A. (2012). Affinity and removal of radionuclides mixture from low-level liquid waste by synthetic ferrierites. Journal of Radioanalytical and Nuclear Chemistry, 292(2), 729738.CrossRefGoogle Scholar
Seo, S. M., Kim, H. S., Chung, D. Y., Suh, J. M., & Lim, W. T. (2014). The effect of Co +-ion exchange time into zeolite Y (FAU, Si/Al = 1.56): Their single-crystal structures. Bulletin of the Korean Chemical Society, 35(1), 243249.CrossRefGoogle Scholar
Sikalidis, C. A., Misaelides, P., & Alexiades, C. A. (1988). Caesium selectivity and fixation by vermiculite in the presence of various competing cations. Environmental Pollution, 52(1), 6779.CrossRefGoogle ScholarPubMed
Smith, D. W. (1977). Ionic hydration enthalpies. Journal of Chemical Education, 54(9), 540542.CrossRefGoogle Scholar
Song, W., Justice, R. E., Jones, C. A., Grassian, V. H., & Larsen, S. C. (2004). Synthesis, characterization, and adsorption properties of nanocrystalline ZSM-5. Langmuir, 20, 83018306.CrossRefGoogle ScholarPubMed
Sparks, D. L. (1987). Potassium Dynamics in Soils. In Stewart, B. A. (Ed.), Advances in Soil Science (Vol. 6, pp. 163). Springer.CrossRefGoogle Scholar
Sparks, D. L., & Carski, T. H. (1985). Kinetics of potassium exchange in heterogeneous systems. Applied Clay Science, 1, 89101.CrossRefGoogle Scholar
Sparks, D. L., Zelazny, L. W., & Martens, D. C. (1980). Kinetics of potassium exchange in a Paleudult from the coastal plain of Virginia. Soil Science Society of America Journal, 44(1), 3740.CrossRefGoogle Scholar
Sposito, G., de Wit, J. C. M., & Neal, R. H. (1988). Selenite adsorption on alluvial soils: III. Chemical modeling. Soil Science Society of America Journal, 52(4), 947950.CrossRefGoogle Scholar
Tanaka, K., Takahashi, Y., Sakaguchi, A., Umeo, M., Hayakawa, S., Tanida, H., Saito, T., & Kanai, Y. (2012). Vertical profiles of iodine-131 and cesium-137 in soild in Fukushima Prefecture related to the Fukushima Daiichi nuclear power station accident. Geochemical Journal, 46, 7376.CrossRefGoogle Scholar
Teppen, B. J., & Miller, D. M. (2006). Hydration energy determines isovalent cation exchange selectivity by clay minerals. Soil Science Society of America Journal, 70(1), 3140.CrossRefGoogle Scholar
Weiss, R., & Bourgeois, J. (2012). Understanding sediments—Reducing tsunami risk Science, 336(6085), 1117.CrossRefGoogle ScholarPubMed
Yamamoto, T., Takigawa, T., Fujimura, T., Shimada, T., Ishida, T., Inoue, H., & Takagi, S. (2019). Which types of clay minerals fix cesium ions effectively? The “cavity-charge matching effect”. Physical Chemistry Chemical Physics, 21(18), 93529356.Google ScholarPubMed