Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T20:26:32.423Z Has data issue: false hasContentIssue false

Colloid Stability of Clays Using Photon Correlation Spectroscopy

Published online by Cambridge University Press:  02 April 2024

B. E. Novich
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
T. A. Ring
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Photon correlation spectroscopy (PCS), a dynamic light-scattering technique for particle size measurement, was used to determine the coagulation rates of aqueous dispersions of relatively monodisperse South Carolina Peerless kaolinite, Silver Hill, Montana, illite, Wyoming montmorillonite, and Florida palygorskite. This technique allows quantitative measurement of the rate of coagulation for clay particles where the traditional turbidity method gives only a qualitative measure. The critical coagulation concentrations for KCl at pH = 10.0 were: 0.199 M for kaolinite, 0.202 M for illite, 0.290 M for montmorillonite, and 0.034 M for palygorskite. The effective Hamaker constants, calculated using Derjaguin-Landau-Verwey-Overbeek theory, were: 3.1 × 10−20 J for kaolinite, 2.5 × 10−20 J for illite, 2.2 × 10−20 J for montmorillonite, and 1.63 × 10−19 J for palygorskite. Stern potentials at the critical coagulation concentration at pH 10.0 were: −42.7 mV for kaolinite, −40.7 mV for illite,‒21.2 mV for montmorillonite, and −66.9 mV for palygorskite.

Резюме

Резюме

Фото-корреляцционная спектроскопия (ФКС), динамический, свет рассеивающий метод для измерений размера частиц, использовалась для определения скоростей коагуляции водных дисперсий относительно монодисперсионных каолинитов из Южной Каролины, иллита из Серебряного Холма, Монтана, монтмориллонита из Вайоминга и палыгорскита из Флориды. Этот метод позволяет из¬мерять количественно скорость коагуляции частиц глины в случае, когда традиционный метод путем мутнения дает только качественное измерение. Критические концентрации коагуляции КС1 при рН = 10 были: 0,199 М для каолинита, 0,202 М для иллита, 0,29 М для монтмориллонита, и 0,034 М для палыгорскита. Эффективные постоянные Гамакера, рассчитанные при использовании теории Дер-жагина-Ландау-Веруэя-Овербика, составляли: 3,1 × 10−20 дж для каолинита, 2,5 × 10t—20 дж для ил-лита, 2,2 × 10−20 дж для монтмориллонита, и 1,63 × 10−19 дждля палыгорскита. Потенциалы Штерна при критических концентрациях коагуляции при рН = 10,0 составляли: −42,7 мв для каолинита, −40,7 мв для иллита, −21,2 мв для монтмориллонита, и −66,9 мв для палыгорскита. [E.G.]

Resümee

Resümee

Photonenkorrelationsspektroskopie (PCS), eine dynamische auf Lichtstreuung beruhende Technik zur Messung der Teilchengröße wurde verwendet, um die Koagulationsgeschwindigkeiten von wässrigen Dispersionen von relativ monodispersem South Carolina Peerless Kaolinit; Illit von Silver Hill, Montana; Montmorillonit von Wyoming; und Palygorskit von Florida zu bestimmen. Diese Methode erlaubt die quantitative Messung der Koagulationsgeschwindigkeit für Tonpartikel, während die her¬kömmliche Turbiditätsmethode nur qualitative Messungen ergibt. Die kritischen Koagulationskonzen¬trationen für KCl bei pH 10,0 waren: 0,199 m für Kaolinit; 0,202 m für Illit; 0,290 m für Montmorillonit; und 0,034 m für Palygorskit. Die wirksamen Hamaker-Konstanten, die unter Verwendung der Derjaguin-Landau-Verwey-Overbeek-Theorie berechnet wurden, waren: 3,1 × 10−20 J für Kaolinit; 2,5 × 10−20 J für Illit; 2,2 × 10−20 J für Montmorillonit; und 1,63 × 10−19 für Palygorskit. Die Stern-Potentiale bei der kritischen Koagulationskonzentration bei pH 10,0 waren −42,7 mV für Kaolinit; −40,7 mV für Illit; −21,2 mV für Montmorillonit; und − 66,9 mV für Palygorskit. [U.W.]

Résumé

Résumé

La spectroscopie à corrélation de photons (PCS), une technique dynamique, éparpillant la lumière pour mesurer la taille de particules, a été utilisée pour déterminer les allures de coagulation des dispersions aqueuses relativement monodisperses de kaolinite Peerless de Caroline du Sud, d'illite de Silver Hill du Montana, de montmorillonite du Wyoming, et de palygorskite de Floride. Cette technique permet de mesurer l'allure de coagulation de particules d'argile de manière quantitative, tandis que la méthode traditionnelle de turbidité ne donne qu'une mesure qualitative. Les concentrations de coagulation critiques pour KCl au pH = 10,0 étaient: 0,199 M pour la kaolinite, 0,202 M pour l'illite, 0,290 M pour la montmorillonite, et 0,034 M pour la palygorskite. Les constantes effectives d'Hamaker, calculées d'après la théorie Derjaguin-Landau-Verwey-Overbeek, étaient 3,1 × 10−20 J pour la kaolinite, 2,5 × 10−20 J pour l'illite, 2,2 × 10−20 J pour la montmorillonite, et 1,63 × 10−19 J pour la palygorskite. Les potentiels de Stern aux concentrations critiques de coagulation au pH 10,0 étaient: −42,7 mV pour la kaolinite, −40,7 mV pour l'illite, −21,2 mV pour la montmorillonite, et −66,9 mV pour la palygorskite. [D.J.]

Type
Research Article
Copyright
Copyright © 1984, The Clay Minerals Society

References

Allen, T., 1981 Particle Size Measurement 3 London Chapman and Hall Publ..CrossRefGoogle Scholar
Barringer, E. A., Novich, B. E. and Ring, T. A., 1983 Colloidal stability of ceramic powders using photon correlation spectroscopy J. Colloid Interface Sci. .CrossRefGoogle Scholar
Bleier, A. and Matijevic, E., 1976 Heterocoagulation. VI. Interactions of a monodispersed chromium hydroxide with polyvinyl chloride latex J. Colloid Interface Sci. 55 510535.CrossRefGoogle Scholar
Chu, B., 1974 Laser Light Scattering N.Y. Academic Press.Google Scholar
Cummings, H. Z., Pusey, P. N., Cummings, H. Z. and Pike, E. R., 1977 Dynamics of macromolecular motion Photon Correlation Spectroscopy and Velocimetry N.Y. Plenum Press 164199.Google Scholar
Friend, J. P. and Hunter, R. J., 1970 Vermiculite as a model system in the testing of double layer theory Clays & Clay Minerals 18 275283.CrossRefGoogle Scholar
Honig, E. P., Roberson, G. J. and Wiersema, P. H., 1971 Effect of hydrodynamic interaction on the coagulation rate of hydrophobic colloids J. Colloid Interface Sci. 36 97109.CrossRefGoogle Scholar
Israelachvilli, J. N. and Adams, G. E., 1978 Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm J. Chem. Soc, Faraday Trans. 774 9751001.CrossRefGoogle Scholar
Koppel, D. E., 1972 Analysis of macromolecular polydis-persity in intensity correlation spectroscopy: the method of cumulants J. Chem. Phys. 57 48144820.CrossRefGoogle Scholar
Krupp, H., Schnabel, W. and Walter, G., 1972 The Lif-shitz-Van der Waals constant on the basis of optical data J. Colloid Interface Sci. 39 421423.CrossRefGoogle Scholar
Lambe, T. W. and Whitman, R. V., 1968 Soil Mechanics N.Y. Wiley 2940.Google Scholar
Lips, A. and Willis, E., 1973 Low angle light scattering technique for the study of coagulation J. Chem. Soc, Faraday Trans. 169 12261236.CrossRefGoogle Scholar
Marmur, A., 1979 A kinetic theory approach to primary and secondary minimum coagulations and their combination J. Colloid Interface Sci. 72 4148.CrossRefGoogle Scholar
Mathews, B. A. and Rhodes, C. T., 1970 Studies of the coagulation kinetics of mixed suspensions J. Colloid Interface Sci. 32 332338.CrossRefGoogle Scholar
May, A. and Smelley, A. G., 1979 Effects of electrolytes on the electrophoretic mobilities of Florida phosphatic clay wastes Bur. Mines Rept. Invest. 8398 113.Google Scholar
Novich, B., 1983 Composition and rheology of Florida phosphatic waste clay slurries: geotechnical implications Cambridge, Mass. Dept. of Civil Engineering, Massachusetts Institute of Technology.Google Scholar
Overbeek, J. Th. G., 1952 Coagulation phenomena Colloid Science 1 159.Google Scholar
Reerink, H. and Overbeek, J Th G, 1954 The rate of coagulation as a measure of the stability of silver iodide sols Disc. Faraday Soc. 18 7484.CrossRefGoogle Scholar
Sasaki, H., Matejevic, E. and Barouch, E., 1980 Heterocoagulation. VI. Interactions of a monodispersed hydrous aluminum oxide sol with polystyrene latex J. Colloid Interface Sci. 76 319329.CrossRefGoogle Scholar
Spielman, L., 1970 Viscous interactions in Brownian coagulation J. Colloid Interface Sci. 33 562571.CrossRefGoogle Scholar
Tabor, D. and Winterton, R. H. S., 1969 The direct measurement of normal and retarded Van der Waals forces Proc. Roy. Soc. 312 435450.Google Scholar
Tambour, V. and Seinfeld, J. H., 1980 Solution of the discrete coagulation equation J. Colloid Interface Sci. 74 260272.CrossRefGoogle Scholar
van Olphen, H., 1957 Surface conductance of various ion forms of bentonite in water and the electrical double layer J. Amer. Chem. Soc. 61 12761280.Google Scholar
van Olphen, H., 1977 Introduction to Clay Colloid Chemistry 2 N.Y. Wiley.Google Scholar
van Olphen, H. and Fripiat, J. J., 1979 Data Handbook for Clay Materials and other Non-Metallic Minerals New York Pergamon Press.Google Scholar
von Smoluchowski, M., 1917 Versuch einer mathematischen Theorieder Koagulationskinetic kolloider Lösungen Z. Phys. Chem. 92 129168.Google Scholar
Weise, G. R. and Healy, T. W., 1975 Coagulation and electrokinetic behavior of TiO2 and H2O colloidal dispersions J. Colloid Interface Sci. 51 427433.CrossRefGoogle Scholar
Williams, D. J. A. and Williams, K. P., 1978 Electrophoresis and zeta potential of kaolinite J. Colloid Interface Sci. 65 7987.CrossRefGoogle Scholar
Yates, D.E., 1975 The structure of the oxide/aqueous electrolyte interface Australia University of Melbourne.Google Scholar