Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T19:10:21.638Z Has data issue: false hasContentIssue false

Clay Minerals in Early Amphibole Weathering: Tri- to Dioctahedral Sequence as a Function of Crystallization Sites in the Amphibole

Published online by Cambridge University Press:  01 January 2024

D. Proust*
Affiliation:
UMR 6532 CNRS, HydrASA, Faculté des Sciences, 40 Avenue du recteur Pineau, 86022 Poitiers cedex, France
J. Caillaud
Affiliation:
UMR 8013 CNRS, ELICO, Université du Littoral Côte d’Opale, MREN, 32 Avenue Foch, 62930 Wimereux, France
C. Fontaine
Affiliation:
UMR 6532 CNRS, HydrASA, Faculté des Sciences, 40 Avenue du recteur Pineau, 86022 Poitiers cedex, France
*
*E-mail address of corresponding author: dominique.proust@hydrasa.univ-poitiers.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The early stages of amphibole weathering result in the crystallization of several clay mineral species: tri- and dioctahedral smectites, interstratified dioctahedral kaolinite-smectite (K-S), and halloysite. Each clay mineral crystallizes into specific microsites which develop from etch pits along specific crystallographic directions in the host amphibole. Two types of microsites are recognized according to their location in the amphibole crystal and their clay mineral crystallizations. The first type is a plane surface related to the (110) amphibole cleavages where saponite particles crystallize in a characteristic honeycomb texture. The second type is a ‘sawtooth’ (001) fracture surface generated by etch-pit coalescence where (1) platy K-S particles crystallize directly in contact with the amphibole at the top of ‘teeth’, (2) halloysite particles with tubular habits crystallize directly in contact with the amphibole on the side of the ‘teeth’, and/or on the K-S particles, and (3) montmorillonite crystallizes in the central part of the (001) fracture as a layer with honeycomb texture in contact with the K-S platelets located at the top of ‘teeth’. The microtextural relationships between the clay minerals and their host mineral suggest the following crystallization sequence: (1) saponite and montmorillonite crystallize first on the (110) and (001) surfaces, respectively; (2) as amphibole dissolution proceeds perpendicular to the (001) fracture planes, montmorillonites continue to form in the middle part of the widening fracture whereas K-S crystallizes on the ‘sawtooth’ termination; (3) in the last stage of weathering, tubular halloysite crystallizes on the side of the ‘teeth’, and/or on the K-S.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

References

Abreu, M.M. Vairinho, M. and Douglas, L.A., (1990) Amphibole alteration to vermiculite in a weathering profile of gabbro-diorite Soil Micromorphology Amsterdam Elsevier 493500.Google Scholar
Bain, D.C. Roe, M.J. Duthie, D.M.L. and Thomson, C.M., (2001) The influence of mineralogy on weathering rates and processes in an acid-sensitive granitic catchment Applied Geochemistry 16 931937 10.1016/S0883-2927(00)00071-8.CrossRefGoogle Scholar
Banfield, J.F. and Barker, W.W., (1994) Direct observation of reactant-product interfaces formed in natural weathering of exsolved, defective amphibole to smectite: Evidence for episodic, isovolumetric reactions involving structural inheritance Geochimica et Cosmochimica Acta 58 14191429 10.1016/0016-7037(94)90546-0.CrossRefGoogle Scholar
Baronnet, A., (1997) Silicate microstructures at the sub-atomic scale Comptes Rendus de l’Académie des Sciences, Série II a: Sciences de la Terre et des Planètes 324 157172.Google Scholar
Brantley, S.L. Chen, Y., White, A.F. and Brantley, S.L., (1995) Chemical weathering rates of pyroxenes and amphiboles Chemical Weathering Rates of Silicate Minerals Washington, D.C Mineralogical Society of America 119172 10.1515/9781501509650-006.CrossRefGoogle Scholar
Caillaud, J. Proust, D. Righi, D. and Martin, F., (2004) Fe-rich clays in a weathering profile developed from serpentinite Clays and Clay Minerals 52 779791 10.1346/CCMN.2004.05206013.CrossRefGoogle Scholar
Cole, W.F. and Lancucki, C.J., (1976) Montmorillonite pseudomorphs after amphibole from Melbourne, Australia Clays and Clay Minerals 24 7983 10.1346/CCMN.1976.0240205.CrossRefGoogle Scholar
Delvaux, B. Herbillon, A.J. Vielvoye, L. and Mestdagh, M.M., (1990) Surface properties and clay mineralogy of hydrated halloysitic soil clays. II. Evidence for the presence of halloysite/smectite (H/Sm) mixed-layer clays Clay Minerals 25 141160 10.1180/claymin.1990.025.2.02.CrossRefGoogle Scholar
Dreher, P. and Niederbudde, E.A., (2000) Characterization of expandable layer silicates in humic-ferralic cambisols (umbrept) derived from biotite and hornblende Journal of Plant Nutrition and Soil Science 163 447453 10.1002/1522-2624(200008)163:4<447::AID-JPLN447>3.0.CO;2-W.3.0.CO;2-W>CrossRefGoogle Scholar
Eggleton, R.A., (1975) Nontronite topotaxial after hedenbergite American Mineralogist 60 10631068.Google Scholar
Eggleton, R.A., (1982) Weathering of enstatite to talc through a sequence of transitional phases Clays and Clay Minerals 30 1120 10.1346/CCMN.1982.0300102.CrossRefGoogle Scholar
Eggleton, R.A. and Smith, K.L., (1983) Silicate alteration mechanisms Sciences Géologiques, Mémoire 71 4553.Google Scholar
Ildefonse, P.h., (1980) Mineral facies developed by weathering of a meta-gabbro, Loire Atlantique (France) Geoderma 24 257273 10.1016/0016-7061(80)90028-2.CrossRefGoogle Scholar
Ildefonse, P.h. Copin, E. and Velde, B., (1979) A soil vermiculite formed from a meta-gabbro, Loire-Atlantique, France Clay Minerals 14 201210 10.1180/claymin.1979.014.3.06.CrossRefGoogle Scholar
IMA, Nomenclature of amphiboles Mineralogical Magazine (1978) 42 533563 10.1180/minmag.1978.042.324.21.CrossRefGoogle Scholar
Islam, M.R. Peuraniemi, V. Aario, R. and Rojstaczer, S., (2002) Geochemistry and mineralogy of saprolite in Finnish Lapland Applied Geochemistry 17 885902 10.1016/S0883-2927(02)00016-1.CrossRefGoogle Scholar
Jolicoeur, S. Ildefonse, P.h. and Bouchard, M., (2000) Kaolinite and gibbsite weathering of biotite within saprolites and soils of Central Virginia Soil Science Society of America Journal 64 11181129 10.2136/sssaj2000.6431118x.CrossRefGoogle Scholar
Kampf, N. Schneider, P. and Mello, P.F., (1995) Alteracoes mineralogicas em sequencia vertissolo-litossolo na Regiao da Campanha no Rio Grande do Sul Revista Brasileira de Ciencia do Solo 19 349357.Google Scholar
Lanson, B., (1993) DECOMPXR, X-ray Decomposition Program Poitiers, France ERM.Google Scholar
Luce, R.W. Bartlett, R.W. and Parks, G.A., (1972) Dissolution kinetics of magnesium silicates Geochimica et Cosmochimica Acta 36 3550 10.1016/0016-7037(72)90119-6.CrossRefGoogle Scholar
Price, J.R. Velbel, M.A. and Patino, L.C., (2005) Rates and time scales of clay-mineral formation by weathering in saprolitic regoliths of the southern Appalachians from geochemical mass balance Geological Society of America Bulletin 117 783794 10.1130/B25547.1.CrossRefGoogle Scholar
Proust, D., van Olphen, H. and Veniale, F., (1982) Supergene alteration of hornblende in an amphibolite from Massif Central (France) Proceedings of the 7thInternational Clay Conference, Bologna-Pavia, 1981 Amsterdam Elsevier 357364.Google Scholar
Proust, D., (1985) Amphibole weathering in a glaucophaneschist (Ile de Groix, Morbihan, France) Clay Minerals 20 161170 10.1180/claymin.1985.020.2.01.CrossRefGoogle Scholar
Proust, D. and Velde, B., (1978) Beidellite crystallization from plagioclase and amphibole precursors: local and long-range equilibrium during weathering Clay Minerals 13 199209 10.1180/claymin.1978.013.2.07.CrossRefGoogle Scholar
Reynolds, R.C., (1985) NEWMOD, a computer program for the calculation of one-dimensional diffraction powders of mixed-layer clays 8 Brook Rd., Hanover, New Hampshire 03755 USA R.C. Reynolds 315 pp.Google Scholar
Righi, D. Meunier, A. and Velde, B., (1995) Origin of clays by rock weathering and soil formation Origin and Mineralogy of Clays. Clays and the Environment Berlin Springer-Verlag 43161 10.1007/978-3-662-12648-6_3.CrossRefGoogle Scholar
Righi, D. Terribile, F. and Petit, S., (1998) Pedogenic formation of high-charge beidellite in a vertisol from Sardinia (Italy) Clays and Clay Minerals 46 167177 10.1346/CCMN.1998.0460207.CrossRefGoogle Scholar
Righi, D. Terribile, F. and Petit, S., (1999) Pedogenic formation of kaolinite-smectite mixed layers in a soil toposequence developed from basaltic parent material in Sardinia (Italy) Clays and Clay Minerals 47 505514 10.1346/CCMN.1999.0470413.CrossRefGoogle Scholar
Schott, J. Berner, R.A. and Sjöberg, E.L., (1981) Mechanism of pyroxene and amphibole weathering. I. Experimental studies of iron-free minerals Geochimica et Cosmochimica Acta 45 21232135 10.1016/0016-7037(81)90065-X.CrossRefGoogle Scholar
Velbel, M.A., (1989) Weathering of hornblende to ferruginous products by a dissolution-reprecipitation mechanism: petrography and stoichiometry Clays and Clay Minerals 37 515524 10.1346/CCMN.1989.0370603.CrossRefGoogle Scholar
Wakatsuki, T. and Rasyidin, A., (1992) Rates of weathering and soil formation Geoderma 52 251263 10.1016/0016-7061(92)90040-E.CrossRefGoogle Scholar
Watanabe, T. Sawada, Y. Russell, J.D. McHardy, W.J. and Wilson, M.J., (1992) The conversion of montmorillonite to interstratified halloysite-smectite by weathering in the Omi acid clay deposit, Japan Clay Minerals 27 159173 10.1180/claymin.1992.027.2.02.CrossRefGoogle Scholar
Wegner, M.W. and Christie, J.M., (1985) Chemical etching of amphiboles and pyroxenes Physics and Chemistry of Minerals 12 8689 10.1007/BF01046831.CrossRefGoogle Scholar
Wilson, M.J., Schultz, L.G. van Olphen, H. and Mumpton, F.A., (1987) Soil smectites and related interstratified minerals: Recent developments Proceedings of the International Clay Conference, Denver, 1985 Bloomington, Indiana The Clay Minerals Society 167173.Google Scholar
Wilson, M.J., (2004) Weathering of the primary rock-forming minerals: processes, products and rates Clay Minerals 39 233266 10.1180/0009855043930133.CrossRefGoogle Scholar
Wilson, M.J. and Farmer, V.C., (1970) A study of weathering in a soil derived from a biotite-hornblende rock. II. The weathering of hornblende Clay Minerals 8 435444 10.1180/claymin.1970.008.4.06.CrossRefGoogle Scholar
Zhang, H. and Bloom, P.R., (1999) The pH dependence of hornblende dissolution Soil Science 164 624632 10.1097/00010694-199909000-00002.CrossRefGoogle Scholar
Zhang, H. and Bloom, P.R., (1999) Dissolution kinetics of hornblende in organic acid solutions Soil Science Society of America Journal 63 815822 10.2136/sssaj1999.634815x.CrossRefGoogle Scholar
Zhang, H. Bloom, P.R. Nater, E.A. and Erich, M.S., (1996) Rates and stoichiometry of hornblende dissolution over 115 days of laboratory weathering at pH 3.6–4.0 and 25°C in 0.01 M lithium acetate Geochimica et Cosmochimica Acta 60 941950 10.1016/0016-7037(95)00447-5.CrossRefGoogle Scholar