Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T18:49:43.544Z Has data issue: false hasContentIssue false

Clay Mineral Diagenesis and Thermal History of the Thonex Well, Western Swiss Molasse Basin

Published online by Cambridge University Press:  28 February 2024

Roland Schegg
Affiliation:
Département de Géologie et Paléontologie, 13 rue des Maraîchers, 1211 Geneva 4, Switzerland Geoform Ltd, Anton-Graff-Str. 6, 8401 Winterthur, Switzerland
Werner Leu
Affiliation:
Geoform Ltd, Anton-Graff-Str. 6, 8401 Winterthur, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Results are presented of a diagenetic study from the 1300 m thick Oligocene Molasse deposits penetrated by the Thônex geothermal exploration well (Geneva, Switzerland). The x-ray diffraction (XRD) studies of fine-grained rocks indicate the following diagenetic changes: a decrease of illite/smectite (US) expandability from approximately 90% to 30% with depth, a decrease of the amount of US in the clay mineral fraction, and the appearance of corrensite at depths >750 m. The transition from random US to ordered I/S occurs at the base of the Thônex well (1200 to 1300 m) and is associated with a coal rank of about 0.7% Rr (mean random vitrinite reflectance) corresponding to paleotemperatures of 110 to 115 °C Corrensite appears at a vitrinite reflectance value of 0.6% Rr and a corresponding paleotemperature of 100 °C. The amount of post-Molasse erosion is estimated to be approximately 2 km. Thermal history modeling of the Thônex well suggests maximum paleotemperatures of 80 to 115°C and an average paleogeothermal gradient of 27 °C/km during Late Miocene maximum burial conditions.

Type
Research Article
Copyright
Copyright © 1996, The Clay Minerals Society

References

Allen, P.A. and Allen, J.R.. 1990. Basin analysis: Principles and applications. Oxford: Blackwell Scientific Publication. 451 p.Google Scholar
Berger, J.-P., Charollais, J. and Hugueney, M.. 1987. Nouvelles données biostratigraphiques sur la Molasse rouge du bassin genevois. Arch Sci Genève 40: 7795.Google Scholar
Bodine, M.W. Jr. and Madsen, B.M.. 1987. Mixed-layer chlorite/smectites from a Pennsylvanian evaporite cycle, Grand County, Utah. In: Schultz, L.G., van Olphen, H., Mumpton, F.A., editors. Proceeding of the International Clay Conference Denver. Boulder, CO: The Clay Minerals Society, p 8593.Google Scholar
Bodmer, P. and Rybach, L.. 1984. Geothermal map of Switzerland (heat flow density). Beitr Geol Schweiz, Ser Geophysik 22. 47 p.Google Scholar
Bustin, R.M., Barnes, M.A. and Barnes, W.C.. 1985. Diagenesis 10. Quantification and modelling of organic diagenesis. Geosci Canada 12: 421.Google Scholar
Chang, H.K., Mackenzie, F.T. and Schoonmaker, J.. 1986. Comparison between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian offshore basins. Clays Clay Miner 34: 407423.CrossRefGoogle Scholar
Deming, D. and Chapman, D.S.. 1989. Thermal histories and hydrocarbon generation: An example from the Utah-Wyoming thrust belt. Bull Am Assoc Petrol Geol 73: 14551471.Google Scholar
Falvey, D.A. and Middleton, M.F.. 1981. Passive continental margins: Evidence for prebreakup deep crustal metamorphic subsidence mechanism. In: Proceedings 26th International Geological Congress, Geology of continental margins symposium. Paris: Oceanologica Acta. p 103114.Google Scholar
Glasmann, J.R., Larter, S., Briedis, N.A. and Lundegard, P.D.. 1989. Shale diagenesis in the Bergen High Area, North Sea. Clays Clay Miner 37: 97112.CrossRefGoogle Scholar
Gorin, G., Signer, C. and Amberger, G.. 1993. Structural configuration of the western Swiss Molasse Basin as defined by reflection seismic data. Eclogae Geol Helv 86: 693716.Google Scholar
Hillier, S.. 1993. Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland. Clays Clay Miner 41: 240259.CrossRefGoogle Scholar
Hillier, S.. 1995. Mafic phyllosilicates in low-grade metabasites. Characterization using deconvolution analysis—Discussion. Clay Miner 30: 6773.CrossRefGoogle Scholar
Hochuli, P.A.. 1978. Palynologische Untersuchungen im Oligozän und Untermiozän der Zentralen und Westlichen Paratethys. Beitr Paläont Oesterreich 4: 1132.Google Scholar
Hoffman, J. and Hower, J.. 1979. Clay mineral assemblages as low grade metamorphic geothermometers: Application to the thrust faulted disturbed belt of Montana, USA. SEPM Spec Publ 26: 5579.Google Scholar
Homewood, P., Allen, P.A. and Williams, G.D.. 1986. Dynamics of the Molasse Basin of western Switzerland. Spec Publ Int Assoc Sediment 8: 199217.Google Scholar
Inoue, A., Utada, M., Nagata, H. and Watanabe, T.. 1984. Conversion of trioctahedral smectite to interstratified chlorite/smectite in Pliocene acidic pyroclastic sediments of the Ohyu district, Akita prefecture, Japan. Clay Sci Soc Japan 6: 103116.Google Scholar
Inoue, A., Kohyama, N., Kitagawa, R. and Watanabe, T.. 1987. Chemical and morphological evidence for the conversion of smectite to illite. Clays Clay Miner 35: 11120.CrossRefGoogle Scholar
Inoue, A., Velde, B., Meunier, A. and Touchard, G.. 1988. Mechanism of illite formation during smectite-to-illite conversion in a hydrothermal system. Am Mineral 73: 13251334.Google Scholar
Inoue, A. and Utada, M.. 1991. Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita area, northern Honshu, Japan. Am Mineral 76: 628640.Google Scholar
Jacob, H. and Kuckelkorn, K.. 1977. Das Inkohlungsprofil der Bohrung Miesbach 1 und seine erdölgeologische Interpretation. Erdöl-Erdgas-Z 93: 115124.Google Scholar
Jenny, J., Burri, J.-P., Muralt, R., Pugin, A., Schegg, R., Ungemach, P., Vuataz, F.-D. and Wernli, R.. 1995. Le forage géothermique de Thônex (Canton de Genève): aspects stratigraphiques, tectoniques, diagénétiques, géophysiques et hydrogéologiques. Eclogae Geol Helv 88: 365396.Google Scholar
Kisch, H.J.. 1987. Correlation between indicators of very low-grade metamorphism. In: Frey, M., editor. Low temperature metamorphism. Glasgow-London: Blackie. p 227300.Google Scholar
Kübler, B.. 1973. La corrensite, indicateur possible de milieux de sédimentation et du degré de transformation d'un sédiment. Bull Cent Rech-Expl Elf-Aquitaine, Pau-SNPA 7: 543556.Google Scholar
Lanson, B. and Champion, D.. 1991. The I/S-to-illite reaction in the late stage of diagenesis. Am J Sci 291: 473506.CrossRefGoogle Scholar
Larter, S.. 1989. Chemical models of vitrinite reflectance evolution. Geol Rdsch 78: 349359.CrossRefGoogle Scholar
Laubscher, H.P.. 1974. Basement uplift and decollement in the Molasse Basin. Eclogae Geol Helv 67: 531537.Google Scholar
Lemcke, K.. 1974. Vertikalbewegungen des vormesozoischen Sockels im nördlichen Alpenvorland vom Perm bis zur Gegenwart. Eclogae Geol Helv 67: 121133.Google Scholar
Matter, A., Homewood, P., Caron, C., Van Stuijvenberg, J., Weidmann, M. and Winkler, W.. 1980. Flysch and Molasse of western and central Switzerland. In: Trümpy, R., editor. Geology of Switzerland: A guide book. Part B: Geological excursions. Basel-New York: Schweiz Geolog Kommission, Wepf and Co Publishers. p 261293.Google Scholar
Monnier, F.. 1982. Thermal diagenesis in the Swiss molasse basin: Implications for oil generation. Can J Earth Sci 19: 328342.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C.. 1989. X-ray diffraction and the identification and analysis of clay minerals. Oxford-New York: Oxford University Press. 322 p.Google Scholar
Pearson, M.J. and Small, J.S.. 1988. Illite-smectite diagenesis and palaeotemperatures in northern North Sea Quaternary to Mesozoic shale sequences. Clay Miner 23: 109132.CrossRefGoogle Scholar
Pfiffner, A.O.. 1986. Evolution of the north Alpine foreland basin in the Central Alps. Spec Pubis Int Assoc Sediment 8: 219228.Google Scholar
Pollastro, R.M.. 1993. Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays Clay Miner 41: 119133.CrossRefGoogle Scholar
Pollastro, R.M. and Barker, C.E.. 1986. Application of clay-mineral, vitrinite reflectance, and fluid inclusion studies to the thermal and burial history of the Pinedale anticline, Green River Basin, Wyoming. SEPM Spec Publ 38: 7383.Google Scholar
Pytte, A.M. and Reynolds, R.C.. 1989. The thermal transformation of smectite to illite. In: Naeser, N.D. and McCulloh, T.H., editors. Thermal history of sedimentary basins: Methods and case histories. New York-Berlin-London-Paris-Tokyo: Springer-Verlag. p 133140.CrossRefGoogle Scholar
Reggiani, L.. 1989. Faciès lacustres et dynamique sédimentaire dans la Molasse d'eau douce inférieure Oligocène (USM) de Savoie. Eclogae Geol Helv 82: 325350.Google Scholar
Renac, C. and Meunier, A.. 1995. Reconstruction of palaeogeothermal conditions in a passive margin using illite-smectite mixed-layers series (BA1 scientific drill-hole, Ardeche, France). Clay Miner 30: 107118.CrossRefGoogle Scholar
Rettke, R.C.. 1981. Probable burial diagenetic and provenance effects on Dakota Group clay mineralogy, Denver Basin. J Sed Petrol 51: 541551.Google Scholar
J-Ph, R.e.y. and Kübler, B.. 1983. Identification des micas des séries sedimentaires par diffraction X à partir de la série harmonique (001) des préparations orientées. Schweiz mineral petrogr Mitt 63: 1336.Google Scholar
Reynolds, R.C.. 1985. NEWMOD© a computer program for the calculation of one-dimensional diffraction patterns of mixed-layer clays. RC Reynolds, 8 Brook Rd., Hanover, New Hampshire, USA.Google Scholar
Reynolds, R.C.. 1988. Mixed layer chlorite minerals. In: Bailey, S.W., editor. Hydrous phyllosilicates (exclusive of micas). Reviews in Miner 19: 601630.CrossRefGoogle Scholar
Robert, P.. 1985. Histoire géothermique et diagenèse organique. Mém Centres Rech Expl-Prod Elf-Aquitaine 8: 345 p.Google Scholar
Rosenberg, P.E., Kittrick, J.A. and Aja, S.U.. 1990. Mixed-layer illite/smectite: A multiphase model. Am Mineral 75: 11821185.Google Scholar
Rybach, L.. 1984. The paleogeothermal conditions of the Swiss molasse basin: implication for hydrocarbon potential. Rev Inst franç Pétrole 39: 143146.CrossRefGoogle Scholar
Rybach, L. and Bodmer, P.. 1980. Die geothermischen Verhältnisse der Schweizer Geotraverse im Abschnitt Basel-Luzern. Eclogae Geol Helv 73: 501512.Google Scholar
Schärli, U. and Rybach, L.. 1991. Geothermische Detailkartierung der zentralen Nordschweiz 1: 100'000. Beitr Geol Schweiz, Ser Geophysik 24: 51 p.Google Scholar
Schegg, R.. 1992. Coalification, shale diagenesis and thermal modelling in the Alpine Foreland basin: the Western Molasse basin (Switzerland/France). Org Geochem 18: 289300.CrossRefGoogle Scholar
Schegg, R.. 1993. Thermal maturity and history of sediments in the North Alpine Foreland Basin (Switzerland, France). Geneva: Université de Genève, Publ du Département de Géologie et Paléontologie 15: 194 p.Google Scholar
Schegg, R.. 1994. The coalification profile of the well Weggis (Subalpine Molasse, Central Switzerland): Implications for erosion estimates and the paleogeothermal regime in the external part of the Alps. Bull Vereinigung schweiz Petroleum-Geol und -Ing 61: 5767.Google Scholar
SCINTAG™. 1992. Users manual, version 2.15, 230 p.Google Scholar
Shau, Y.-H., Peacor, D.R. and Essene, E.J.. 1990. Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies. Contrib Miner Petrol 105: 123142.CrossRefGoogle Scholar
Smart, G. and Clayton, T.. 1985. The progressive illitization of interstratified illite-smectite from Carboniferous sediments of northern England and its relationship to organic maturity indicators. Clay Miner 20: 455466.CrossRefGoogle Scholar
Sweeney, J.J. and Burnham, A.K.. 1990. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. Bull Am Assoc Petrol Geol 74: 15591570.Google Scholar
Teichmüller, R. and Teichmüller, M.. 1986. Relations between coalification and palaeogeothermics in Variscan and Alpidic foredeeps of western Europe. In: Buntebarth, G., Stegena, L., editors. Paleogeothermics. Berlin-Heidelberg-New York-London-Paris-Tokyo: Springer-Verlag. Lecture Notes in Earth Sci 5: 5378.Google Scholar
Tissot, B.P., Pelet, R. and Ungerer, P.h.. 1987. Thermal history of sedimentary basins, maturation indices and kinetics of oil and gas generation. Bull Am Assoc Petrol Geol 71: 14451466.Google Scholar
Velde, B. and Lanson, B.. 1993. Comparison of I/S transformation and maturity of organic matter at elevated temperatures. Clays Clay Miner 41: 119133.CrossRefGoogle Scholar
Velde, B. and Vasseur, G.. 1992. Estimation of the diagenetic smectite to illite transformation in time-temperature space. Am Mineral 77: 967976.Google Scholar
Weaver, C.E.. 1989. Clays, muds, and shales. Amsterdam-Oxford-New York-Tokyo: Elsevier. Developments in Sedimentology 44: 819 p.Google Scholar
Wildi, W. and Huggenberger, P.. 1993. Reconstitution de la plateforme européenne anté-orogénique de la Bresse aux Chaînes subalpines; éléments de cinématique alpine (France et Suisse occidentale). Eclogae Geol Helv 86: 4764.Google Scholar