Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T18:40:05.289Z Has data issue: false hasContentIssue false

Chemical Characteristics and Origin of Ordovician K-Bentonites along the Cincinnati Arch

Published online by Cambridge University Press:  01 July 2024

Warren D. Huff
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221
Asuman Günal Türkmenoglu*
Affiliation:
Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221
*
1Present address: Department of Geological Engineering, Middle East Technical University, Ankara, Turkey
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

K-bentonites of the Middle Ordovician High Bridge Group along the Cincinnati arch are characterized by interstratified illite/smectite (I/S) clays with rectorite-type ordering. Approximately 20% of the layers are expandable. They are structurally similar to I/S formed at temperatures exceeding 100°C during burial diagenesis, however stratigraphic evidence and a color alteration index of < 1.5 for conodonts in associated carbonates reveals they have never been deeply buried or subjected to temperatures greater than 80°C.

Whole-rock samples of K-bentonites contain ∼8% K2O and ∼4% MgO, whereas the <0.1-µm size fraction contains 6–7% K2O and 5% MgO. By comparison with a hypothetical parent ash, these values represent a net gain of K and Mg and a net loss of Si, Fe, Ca, and Na during post-depositional alteration. K-fixation is accounted for by a layer charge imbalance arising primarily out of octahedral substitution of Mg+2 for Al+3, indicating that the interstratification evolved from a montmorillonite precursor. The chemical characteristics of I/S layers in K-bentonites developed early during the alteration of volcanic ash to montmorillonite. Relatively high contents of K and Mg probably reflect both seawater and parent material composition at the time of formation. The composition and ordered stacking in K-bentonites was determined by the composition of the original smectite rather than by the pressure-temperature conditions of burial diagenesis.

Резюме

Резюме

К-бентониты из Группы Средней Ордовикской Высокий Мосе вдоль Синсинатской дуги характеризируются наличием переслаивающихся иллито-смектитовых (И/С) глин, упорядоченных по типу ректорита. Приблизительно 20% слоев способно расширяться. По структуре они схожи с И/С, формированными при температурах, превышающих 100°С во время глубинного диагенеза. Однако стратиграфические данные и показатель изменения цвета <1,5 для конодонтов в ассоциированных карбонатах показывают, что они никогда глубоко не залегали или не подверголись воздействию температур выше 80°С.

Цельные образцы скальной породы К-бентонитов содержат ~8% K2O и 4% MgO в то время, как фракция размером <0,1 µm содержит 6–7% K2O и 5% MgO. По сравнению с гипотетическим пепелом эти величины говорят о приобретении K и Mg и о потере Si, Fe, Са, и Na в результате послеосадочных изменений. Фиксация К рассчитивалась по увеличению дисбаланса заряда слоя, в основном, путем октаэдрического замещения ионов Аl3+ ионами Mg2+, указывая на то, что промежуточные напластование развивалось от монтмориллонитового предшественника. Химические характеристики И/С слоëв в К-бентонитах формировались ранее во время преобразования вулканического пепела в монтмориллонит. Относительно высокое содержание К и Mg, возможно, является отражением как морской воды, так и состава исходного материала во время образования. Состав и упорядоченная укладка в К-бентонитах определялась скорее составом первоначального смектита, чем условиями температуры и давления при диагенезе. [Е.С.]

Resümee

Resümee

K-Bentonite der mittel-ordovizischen High Bridge Gruppe entlang des Cincinnati-Bogens sind durch Illit/Smektit-Wechsellagerungen (I/S) mit einer Ordnung vom Rektorit-Typ charakterisiert. Ungefähr 20% der Lagen sind expandierbar. Sie sind strukturmäßig den I/S-Wechsellagerungen ähnlich, die bei Temperaturen über 100°C während der Versenkungs-Diagenese gebildet wurden. Die Stratigraphie und ein Farb-Umwandlungs-Index von < 1,5 füt Konodonten in benachbarten Karbonaten zeigen jedoch, daß sie niemals tief versenkt oder einer Temperatur über 80°C ausgesetzt wurden.

Gesamtgesteinsproben der K-Bentonite enthalten ∼8% K2O und ∼4% MgO, während die Kornfraktion <0,1 µm, 6–7% K2O und 5% MgO enthält. Durch den Vergleich mit einer hypothetischen Ausgangsasche bedeuten diese Werte einen Nettogewinn yon K und Mg und einen Nettoverlust von Si, Fe, Ca, und Na während der Umwandlung nach der Ablagerung. Die K-Fixierung erklärt sich aus einem Ladungsungleichgewicht der Lagen, das vor allem durch die oktaedrische Substitution von Mg für Al hervorgerufen wird. Dies deutet darauf hin, daß die Wechsellagerung aus einem Montmorillonit-Vorläufer entstanden ist. Die chemischen Charakteristika der I/S-Lagen in den K-Bentoniten entwickelten sich zu Beginn der Umwandlung der vulkanischen Asche zu Montmorillonit. Relativ hohe Gehalte an K und Mg spiegeln wahrscheinlich sowohl die Zusammensetzung des Meerwassers als auch die der Ausgangssubstanz zur Zeit der Bildung wieder. Die Zusammensetzung und die regelmäßige Anordnung in den K-Bentoniten wurde eher durch die Zusammensetzung des ursprünglichen Smektit bestimmt als durch die Druck-Temperatur-Bedingungen einer Versenkungs-Diagenese. [U.W.]

Résumé

Résumé

Des bentonites-K du groupe Ordovicien Moyen High Bridge le long de l'arche de Cincinnati sont caractérisées par des argiles interstratifiées illite/smectite (I/S) avec un rangement du type rectorite. Approximativement 20% des couches sont expansibles. Structuralement, elles sont semblables aux I/S formées à des températures excédant 100°C pendant la diagénèse d'ensevelissement, l’évidence stratigraphique, cependant, et un indexe d'altération de couleur < 1,5 pour les conodontes dans des carbonates associés révèlent qu'elles n'ont jamais été profondément enterrées ou soumises à des températures plus é1evées que 80°C.

Des échantillons de roche entière de bentonites-K contiennent ∼8% K2O et ∼4% MgO, alors que la fraction de taille <0, l-µm contient 6–7% K2O et 5% MgO. En comparaison avec une cendre hypothétique apparentée, ces valeurs représentent un gain net de K et Mg et une perte nette de Si, Fe, Ca, et Na pendant l'altération produite après déposition. La fixation de K est expliquée par un déséquilibre de charge de couche produit par la substitution octaèdre de Mg +2 à Al +3, indiquant que l'interstratification avait évolué d'un précurseur montmorillonite. Les caractéristiques chimiques des couches I/S dans les bentonites-K se sont développées tôt pendant l'altération de la cendre volcanique en montmorillonite. Des contenus relativement é1evés en K et Mg réflétent probablement à la fois l'eau de mer et la composition de la matière parente au moment de la formation. La composition et l'ordre d'empilement dans les bentonites-K étaient déterminées par la composition de la smectite d'origine plutôt que par les conditions de pression et de température pendant la diagénèse d'enterrement. [D.J.]

Type
Research Article
Copyright
Copyright © 1981, The Clay Minerals Society

References

Bergstrom, S. M. and Nilsson, R., (1974) Age and correlation of the Middle Ordovician bentonites on Bernholm Medd. Dan. Geol. Foren. 23 2748.Google Scholar
Boles, J. R. and Franks, S. G., (1979) Clay diagenesis in Wilcox sandstones of southwest Texas: implications of smectite diagenesis on sandstone cementation J. Sediment. Petrology 49 5570.Google Scholar
Borella, P. E. and Osborne, R. H., (1978) Late Middle and early Late Ordovician history of the Cincinnati arch province, central Kentucky to central Tennessee Geol. Soc. Amer. Bull. 89 15591573.2.0.CO;2>CrossRefGoogle Scholar
Braitsch, O., (1971) Salt Deposits, Their Origin and Composition New York Springer-Verlag.CrossRefGoogle Scholar
Brun, J. and Chagnon, A., (1979) Rock stratigraphy and clay mineralogy of volcanic ash beds from the Black River and Trenton Groups (Middle Ordovician) of southern Quebec Can. J. Earth Sci. 16 14991507.CrossRefGoogle Scholar
Buyce, M. R. and Friedman, G. M., (1975) Significance of authigenic K-feldspar in Cambrian-Ordovician carbonate rocks of the proto-Atlantic shelf in North America J. Sediment. Petrology 45 808821.Google Scholar
Byström, A. M. (1956) Mineralogy of the Ordovician bentonite beds at Kinnekulle, Sweden: Sver. Geol. Unders. Arsh. 48, 62 pp.Google Scholar
Carmichael, I. S. E. Turner, F. J. and Verhoogen, J., (1974) Igneous Petrology New York McGraw-Hill.Google Scholar
Chilingar, G. V., (1956) Relationship between Ca/Mg ratio and geologic age Amer. Assoc. Petrol. Geol. Bull. 40 22562266.Google Scholar
Cressman, E. R. (1973) Lithostratigraphy and depositional environments of the Lexington Limestone (Ordovician) of central Kentucky: U.S. Geol. Surv. Prof. Pap. 768, 61 pp.Google Scholar
Cressman, E. R. and Noger, M. C. (1976) Tidal-flat carbonate environments in the High Bridge Group (Middle Ordovician) of central Kentucky: Kentucky Geol. Surv. Rept. Invest. 18, 15 pp.Google Scholar
Dever, G. R. Jr. (1974) High-carbonate rock in the High Bridge Group (Middle Ordovician), Boone County, Kentucky: Kentucky Geol. Surv., Series X, Inf. Circ. 22, 35 pp.Google Scholar
Dunoyerde Segonzac, G. (1969) Les minéraux argileux dans la diagenèse passage au métamorphisme: Mem. Serv. Carte Geol. Alsace Lorraine 29, 320 pp.Google Scholar
Eberl, D. D., (1978) Reaction series for dioctahedral smectites Clays & Clay Minerals 26 327340.CrossRefGoogle Scholar
Eberl, D. D. and Hower, J., (1976) Kinetics of illite formation Geol. Soc. Amer. Bull. 87 13261330.2.0.CO;2>CrossRefGoogle Scholar
Eberl, D. D. and Hower, J., (1977) The hydrothermal transformation of sodium and potassium smectite into mixed-layer clay Clays & Clay Minerals 25 215227.CrossRefGoogle Scholar
Elsheimer, H. N. and Fabbi, B. P. (1977) Application of an automatic fusion technique to minor and trace element XRF analysis of silicate rocks: 26th Ann. Conf. Applications of X-ray Analysis, Univ. Denver, 31–33, (abstract).Google Scholar
Eslinger, E. Highsmith, P. Albers, D. and deMayo, B., (1979) Role of iron reduction in the conversion of smectite to illite in bentonites in the disturbed belt, Montana Clays & Clay Minerals 27 327338.CrossRefGoogle Scholar
Floyd, P. A. and Winchester, J. A., (1978) Identification and discrimination of altered and metamorphosed volcanic rocks using immobile elements Chem. Geol. 21 291306.CrossRefGoogle Scholar
Foster, M. D. (1960) Interpretation of the composition of trioctahedral micas: U.S. Geol. Surv. Prof. Pap. 354–B, 48 pp.Google Scholar
Grim, R. E. and Kulbicki, G., (1961) Montmorillonite. High-temperature reactions and classification Amer. Mineral. 46 13291369.Google Scholar
Günal, A. (1979) Clay mineralogy, petrography, chemical composition and stratigraphic correlation of some Middle Ordovician K-bentonites in the eastern mid-continent: Ph.D. Thesis, University of Cincinnati, 237 pp.Google Scholar
Harris, A. G., (1979) Conodont color alteration, an organomineral metamorphic index, and its application to Appalachian basin geology Soc. Econ. Paleontol. Mineral. Spec. Publ. 26 316.Google Scholar
Hower, J. and Mowatt, T. C., (1966) The mineralogy of illite and mixed-layer illite/montmorillonites Amer. Mineral. 51 825854.Google Scholar
Hower, J. Eslinger, E. V. Hower, M. E. and Perry, E. A., (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence Geol. Soc. Amer. Bull. 87 727737.2.0.CO;2>CrossRefGoogle Scholar
Hyde, J. E. (1953) The Mississippian formations of central and southern Ohio: Ohio Geol. Surv. Bull. 51, 355 pp.Google Scholar
Jackson, M. L. (1975) Soil Chemical Analysis—Advanced Course: 2nd ed., 10th printing, Publ. by author, Madison, Wisconsin, 895 pp.Google Scholar
Kay, G. M., (1935) Distribution of Ordovician altered volcanic materials and related clays Geol. Soc. Amer. Bull. 46 225244.CrossRefGoogle Scholar
Medlin, J. H. Suhr, N. H. and Bodkin, J. B., (1969) Atomic absorption analysis of silicates employing LiBO2 fusion At. Absorption Newslett. 8 2529.Google Scholar
van Moort, J. C., (1972) The K2O, CaO, MgO and CO2 contents of shales and related rocks and their implications for sedimentary evolution since the Proterozoic 24th Int. Geol. Cong. 10 427439.Google Scholar
Perry, E. A. Jr. and Hower, J., (1970) Burial diagenesis in Gulf Coast pelitic sediments Clays & Clay Minerals 18 165177.CrossRefGoogle Scholar
Perry, E. A. Giekes, J. M. Jr. and Lawrence, J. F., (1976) Mg, Ca and O18/O16 exchange in the sediment-pore water system, Hole 149, DSDP Geochim. Cosmochim. Acta 40 413423.CrossRefGoogle Scholar
Reynolds, R. C. and Hower, J., (1970) The nature of interlayering in mixed-layer illite-montmorillonites Clays & Clay Minerals 18 2536.CrossRefGoogle Scholar
Ronov, A. B. and Migdisov, A. A., (1971) Geochemical history of the crystalline basement and the sedimentary cover of the Russian and North American platforms Sedimentology 16 137185.CrossRefGoogle Scholar
Schultz, L.G. (1978) Mixed-layer clay in the Pierre Shale and equivalent rocks, northern Great Plains region: U.S. Geol. Surv. Prof. Pap. 1064–A, 28 pp.Google Scholar
Scotford, D. M., (1965) Petrology of the Cincinnatian Series shales and environmental implications Geol. Soc. Amer. Bull. 76 193222.CrossRefGoogle Scholar
Snäil, S. (1977) Silurian and Ordovician bentonites of Gotland (Sweden): Stockholm Contrib. Geol. 31, 80 pp.Google Scholar
Środoń, J. (1978) Correlation between coal and clay diagenesis in the Carboniferous of the Upper Silesian coal basin: Prog. Abstracts, Int. Clay Conf., Oxford, 1978, p. 307.Google Scholar
Swett, K., (1968) Authigenic feldspars and cherts resulting from dolomitization of illitic limestones: a hypothesis J. Sediment. Petrology 38 128135.Google Scholar
Velde, B. and Serratosa, J. M., (1973) Phase equilibria for dioctahedral expandable phases in sediments and sedimentary rocks Proc. Int. Clay Conf., Madrid, 1972 Madrid Div. Ciencias C.S.I.C. 283300.Google Scholar
Velde, B. and Brusewitz, A. M. (1978) Evidence for metasomatic diagenesis and non-metasomatic metamorphism of Ordovician meta-bentonites in Sweden: Prog. Abstracts, Int. Clay Conf., Oxford, 1978, p. 306.Google Scholar
Vinogradov, A. P. and Ronov, A. B., (1956) Evolution of the chemical composition of clays of the Russian platform Geokhimiya 2 318.Google Scholar
Weaver, C. E., (1953) Mineralogy and petrology of some Ordovician K-bentonites and related limestones Geol. Soc. Amer. Bull. 64 921943.CrossRefGoogle Scholar
Weaver, C. E. and Beck, K. C. (1971) Clay water diagenesis during burial: How mud becomes gneiss: Geol. Soc. Amer. Spec. Pap. 134, 96 pp.Google Scholar
Weaver, C. E. and Pollard, L. D., (1973) The Chemistry of Clay Minerals New York Elsevier.Google Scholar
Wilson, C. W. Jr. (1949) Pre-Chattanooga stratigraphy in central Tennessee: Tennessee Dept. Conserv. Div. Geol. Bull. 56, 407 pp.Google Scholar
Wolcott, D. E. Cressman, E. G. and Connor, J. J., (1972) Trend-surface analysis of the thickness of the High Bridge Group (Middle Ordovician) of central Kentucky and its bearing on the nature of the post-Knox unconformity U.S. Geol. Surv. Prof. Pap. 800–B 2533.Google Scholar
Woodward, H. P., (1961) Preliminary subsurface study of southeastern Appalachian Interior Plateau Amer. Assoc. Petrol. Geol. Bull. 45 16341655.Google Scholar