Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T18:59:19.611Z Has data issue: false hasContentIssue false

Cation-Exchange Properties of (Al + Na)-Substituted Synthetic Tobermorites

Published online by Cambridge University Press:  02 April 2024

Sridhar Komarneni*
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park Pennsylvania 16802
Else Breval
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park Pennsylvania 16802
Michihiro Miyake
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park Pennsylvania 16802
Rustum Roy
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park Pennsylvania 16802
*
1Also associated with the Department of Agronomy.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Tobermorite, Ca5Si6O16(OH)2·4H2O, is a hydrous calcium silicate that has a layer-type of structure similar to that of the 2:1 clay minerals. In its natural form, tobermorite exhibits little or no exchange for alkali cations; synthetic tobermorites, however, exhibit reversible alkali cation exchange and selective cesium uptake upon a coupled substitution of (Al3+ + Na+) for Si4+. Substituted tobermorites were synthesized using aluminosilicate gels, NaOH, and CaO, in Parr bombs at 175°C for 4 days. Unsubstituted tobermorite was synthesized using quartz and CaO in a Parr bomb at 175°C for 20 hr. Two (Al + Na)-substituted tobermorites showed cation-exchange capacities (CEC) of 77 and 71 meq/100 g, whereas an unsubstituted tobermorite showed a CEC of 12 meq/100 g. The substituted tobermorites exhibited selective Cs exchange from either NaCl or CaCl2 solutions. For example, one substituted tobermorite showed a Cs-exchange coefficient (Kd) of 15,100, whereas unsubstituted tobermorite showed a Kd of only 90 from a 0.02 N CaCl2 solution containing 0.0002 moles/liter CsCl. Exchange isotherms for Na+ ⇋ Cs+ showed that Cs+ is preferred over Na+ throughout the exchange in the (Al + Na)-substituted tobermorites. This group of cation exchangers is expected to find applications in radioactive waste disposal.

Type
Research Article
Copyright
Copyright © 1987, The Clay Minerals Society

References

Ames, L. L., 1963 Mass cation relationships of some zeolites in the region of high competing cation concentrations Amer. Mineral. 48 868882.Google Scholar
Breck, D. W., 1974 Zeolite Molecular Sieves: Structure, Chemistry and Use New York Wiley.Google Scholar
Diamond, S., White, J. L. and Dolch, W. L., 1966 Effects of isomorphous substitution in hydrothermally synthesized tobermorite Amer. Mineral. 51 388401.Google Scholar
Eggleton, R. A. and Guggenheim, S., 1986 A reexamination of the structure of ganophyllite Mineral. Mag. 50 307317.CrossRefGoogle Scholar
El-Hemaly, S. A. S. Mitsuda, T. and Taylor, H. F. W., 1977 Synthesis of normal and anomalous tobermorites Cement Cone. Res. 7 429438.CrossRefGoogle Scholar
Farmer, V. S., Jeevaratnam, J., Speakman, K. and Taylor, H. F. W., 1966 Thermal decomposition of 14 Å tobermorite from Crestmore Proc. of Symp. Structure of Portland Cement Paste and Concrete, U.S. Highway Res. Board Spec. Rpt. 90 291299.Google Scholar
Guggenheim, S. and Eggleton, R. A., 1986 Cation exchange in ganophyllite Mineral. Mag. 50 517520.CrossRefGoogle Scholar
Hamid, S. A., 1981 The crystal structure of the 11 Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5]·1H2O Z. Kristallogø 154 189198.Google Scholar
Hunt, J. P., 1963 Metal Ions in Aqueous Solution New York W. A. Benjamin.Google Scholar
Jackson, M. L., 1974 Soil Chemical Analysis—Advanced Course 2nd ed..Google Scholar
Komarneni, S. and Guggenheim, S., 1987 Comparison of cation exchange in ganophyllite and [Na + Al]-substituted tobermorite: Crystal chemical implications Mineral. Mag. .CrossRefGoogle Scholar
Komarneni, S. and Roy, D. M., 1983 Tobermorites—A new family of cation exchangers Science 221 647648.CrossRefGoogle ScholarPubMed
Komarneni, S. and Roy, D. M., 1985 New tobermorite cation exchangers J. Mat. Sci. 20 29302936.CrossRefGoogle Scholar
Komarneni, S., Roy, D. M. and Roy, R., 1982 Al-substi-tuted tobermorite: Shows cation exchange Cem. Conc. Res. 12 773780.CrossRefGoogle Scholar
Komarneni, S., Roy, R., Roy, D. M., Fyfe, C. A. and Kennedy, G. J., 1985 Al-substituted tobermorite—The coordination of aluminum as revealed by solid-state 27Al-magic angle spinning (MAS) NMR Cem. Conc. Res. 15 723728.CrossRefGoogle Scholar
Komarneni, S., Roy, R., Roy, D. M., Fyfe, C. A., Kennedy, G. J., Bothner-By, A. A., Dadok, J. and Chesnick, A. S., 1985 27A1 and 29Si magic angle spinning nuclear magnetic resonance spectroscopy of Al-substituted tobermorites J. Mat. Sci. 20 42094214.CrossRefGoogle Scholar
McConnell, J. D. C., 1954 The hydrated calcium silicates, riversideite, tobermorite and plomberite Mineral. Mag. 30 293305.Google Scholar
Megaw, H. D. and Kelsey, C. H., 1956 Crystal structure of tobermorite Nature 177 390391.CrossRefGoogle Scholar
Mitsuda, T. and Taylor, H. F. W., 1978 Normal and anomalous tobermorites Mineral Mag. 42 229235.CrossRefGoogle Scholar
Pannaparayil, T., Komarneni, S., Breval, E., Roy, D. M. and Mulay, L. N., 1985 Fe3+-substituted tobermorites: Synthesis and characterization by Mössbauer spectroscopy Mat. Res. Bull. 20 13931400.CrossRefGoogle Scholar
Taylor, H. F. W., 1950 Hydrated calcium silicates. Part I. Compound formation at ordinary temperatures J. Chem. Soc. 36823690.CrossRefGoogle Scholar
Taylor, H. F. W., 1964 The Chemistry of Cements Vol. 1 London Academic Press.Google Scholar
Taylor, H. F. W. and Stroyizd, A. J., 1974 Crystal chemistry of portland cement hydration products Proc. 6th Int. Cong. Chemistry of Cement Moscow Moscow Press.Google Scholar
Taylor, H. F. W. and Howison, J. W., 1956 Relationship between calcium silicates and clay minerals Clay Min. Bull. 31 98111.CrossRefGoogle Scholar
Wieker, W., Grimmer, A. R., Winkler, A., Magi, M., Tarmak, M. and Lippmaa, E., 1982 Solid state high resolution Si-29 NMR spectroscopy of synthetic 14 Å, 11 Å, and 9 Å tobermorites Cem. Cone. Res. 12 333339.CrossRefGoogle Scholar