Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T07:10:06.449Z Has data issue: false hasContentIssue false

Aqueous-Chemical Control of the Tetrahedral-Aluminum Content Of Quartz, Halloysite, and other Low-Temperature Silicates

Published online by Cambridge University Press:  02 April 2024

Enrique Merino
Affiliation:
Department of Geology, Indiana University, Bloomington, Indiana 47405
Colin Harvey*
Affiliation:
Department of Geology, Indiana University, Bloomington, Indiana 47405
H. H. Murray
Affiliation:
Department of Geology, Indiana University, Bloomington, Indiana 47405
*
1Present address: KRTA Ltd., P.O. Box 9806, Auckland, New Zealand.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Aqueous Al passes from octahedral to tetrahedral coordination over a narrow pH interval, or threshold. This interval is 5.5–6.5 at 25°C and shifts to lower pH as temperature increases. The concentration of aqueous tetrahedrally coordinated Al is a quasi-step function of the solution pH, and, by the mass-action law, so should be the amount of tetrahedral Al incorporated by a silicate that crystallizes from the aqueous solution. Qualitative support for this prediction (which applies to quartz, opal-CT, kaolin-group minerals, pyrophyllite, micas, chlorites, and other low-temperature silicates) comes from the very topology of equilibrium activity diagrams and from several pairs of associated waters and authigenic silicates from weathering, hydrothermal, and diagenetic environments. The uptake of tetrahedral Al also depends on the aqueous concentrations of monovalent cations and silica, and on the mineral's structural constraints.

Solid solution of tetrahedral Al in halloysite in turn produces the characteristic bent or tubular crystals of this mineral. This genetic link between aqueous chemistry (mainly pH), tetrahedral-Al uptake by a low-temperature silicate, and the mineral's crystal morphology may operate also in other silicates.

Type
Research Article
Copyright
Copyright © 1989, The Clay Minerals Society

References

Aagaard, P. and Helgeson, H. C., 1984 Activity/composition relations among silicates and aqueous solutions: II. Chemical and thermodynamic consequences of ideal mixing of atoms on homological sites in montmorillonites, illites, and mixed-layer clays Clays & Clay Minerals 31 207217.CrossRefGoogle Scholar
Altschuler, Z. S., Dwornik, E. J. and Kramer, H., 1963 Transformation of montmorillonite to kaolinite during weathering Science 141 148152.CrossRefGoogle ScholarPubMed
Bates, T.F., 1959 Morphology and crystal chemistry of 1:1 layer lattice silicates Amer. Mineral. 44 78114.Google Scholar
Bates, T. F. and Gard, J. A., 1971 The kaolin minerals The Electron-Optical Investigation of Clays London Mineral-ogical Society 109148.CrossRefGoogle Scholar
Bowers, T. S., Jackson, K. J. and Helgeson, H. C., 1984 Equilibrium Activity Diagrams Berlin Springer-Verlag.CrossRefGoogle Scholar
Brindley, G. W., Brindley, G. W. and Brown, G., 1980 Order-disorder in clay mineral structures Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 125195.CrossRefGoogle Scholar
Chernov, A. A., 1984 Modern Crystallography III. Crystal Growth Berlin Springer-Verlag.CrossRefGoogle Scholar
Cotton, F. A. and Wilkinson, G., 1962 Advanced Inorganic Chemistry New York Wiley.Google Scholar
Coutourier, Y., Michard, G. and Sarazin, G., 1984 Constantes de formation des complexes hydroxidés de l’aluminium en solution aqueuse de 20 à 70°C Geochim. Cosmochim. Acta 48 649659.CrossRefGoogle Scholar
Deer, W. A., Howie, R. A. and Zussman, J., 1966 Introduction to the Rock-forming Minerals New York Wiley.Google Scholar
Drever, J. I. et al. , Hollister, C. D. 1976 et al. , Chemical and mineralogical studies, site 323 Initial Reports of the Deep Sea Drilling Project, Vol. 35 Washington, D.C. U.S. Government Printing Office 471478.Google Scholar
Drever, J. I., 1982 The Geochemistry of Natural Waters Englewood Cliffs, N.J. Prentice-Hall.Google Scholar
Fisher, J. R. and Barnes, H. L., 1972 The ion-product constant of water to 350° J. Phys. Chem. 76 9099.CrossRefGoogle Scholar
Gac, J. Y., 1979 Géochimie du bassin du Lac Tchad: Bilan de l’altération, de l’érosion et de la sédimentation Strasbourg, France Univ. Louis Pasteur.Google Scholar
Harvey, C. C., 1980 A study of the alteration products of acid volcanic rocks from northland, New Zealand Bloomington Indiana University.Google Scholar
Hem, J. D. and Robertson, C. E. (1967) Form and stability of aluminum hydroxide complexes in dilute solution: U.S. Geol. Surv. Water-Supply Pap. 1827A, 55 pp.Google Scholar
Hendricks, S. B., 1937 The crystal structure of alunite and the jarosites Amer. Mineral. 22 773784.Google Scholar
de Jong, B H W S Schramm, C. M. and Parziale, V. E., 1983 Polymerization of silicate and aluminate tetrahedra in glasses, melts, and aqueous solutions. IV. Aluminum coordination in glasses and aqueous solutions and comments on the aluminum avoidance principle Geochim. Cosmochim. Acta 47 12231236.CrossRefGoogle Scholar
Kastner, M. and Gieskes, J. M., 1976 Interstitial water profiles and sites of diagenetic reactions, leg 35, DSDP, Bellingshousen abyssal plain Earth Plan. Sci. Lett. 33 1120.CrossRefGoogle Scholar
Keller, W. D., Hanson, R. F., Huang, W. H. and Cervantes, A., 1971 Sequential active alteration of rhyolitic volcanic rock to endellite and precursor phase of it at a spring in Michoacán, Mexico Clays & Clay Minerals 19 121127.CrossRefGoogle Scholar
Komarneni, S., Fyfe, C. A. and Kennedy, G. J., 1985 Order-disorder in 1:1 type clay minerals by solid state 27A1 and 29Si magic-angle-spinning NMR spectroscopy Clay Miner. 20 327334.CrossRefGoogle Scholar
Lewis, G. N., Randall, M., Pitzer, K. S. and Brewer, L., 1961 Thermodynamics New York McGraw-Hill.Google Scholar
May, H.M. Helmke, P.A. and Jackson, M.L., 1979 Gibb-site solubility and thermodynamic properties of hydroxy-aluminum ions in aqueous solution at 25°C Geochim. Cosmochim. Acta 43 861868.CrossRefGoogle Scholar
Merino, E., 1975 Diagenesis in Tertiary sandstones from Kettleman North Dome, California. II. Interstitial solutions: Distribution of aqueous species at 100°C and chemical relation to the diagenetic mineralogy Geochim. Cos-mochim. Acta 39 16291645.CrossRefGoogle Scholar
Merino, E. and Ransom, B., 1982 Free energies of formation of illite solid solutions and their compositional dependence Clays & Clay Minerals 30 2939.CrossRefGoogle Scholar
Newman, A. C. D. Brown, G. and Newman, A. C. D., 1987 The chemical constitution of clays Chemistry of Clays and Clay Minerals London Mineralogical Society 1128.Google Scholar
Parks, G. A. and Stumm, W., 1967 Aqueous surface chemistry of oxides and complex oxide minerals Equilibrium Concepts in Natural Water Systems Washington, D.C. Amer. Chem. Soc. 121160.CrossRefGoogle Scholar
Paquet, H. (1969) Evolution géochimique des minéraux argileux dans les altérations et les sols des climats méditerranéens et tropicaux à saisons contrastées: Mém. Sert. Carte Géol. Alsace Lorraine 30, 212 pp.Google Scholar
Radoslovich, E. W., 1963 The cell dimensions and symmetry of layer-lattice silicates. VI. Serpentine and kaolin morphology Amer. Mineral. 48 368378.Google Scholar
Smith, J. F. and Steele, I. M., 1984 Chemical substitution in silica polymorphs N. Jb. Miner. Mh. H.3 137144.Google Scholar
Stoessell, R. K., 1988 25°C and 1 atm dissolution experiments of sepiolite and kerolite Geochim. Cosmochim. Acta 52 365374.CrossRefGoogle Scholar
Stoessell, R. K. and Hay, R. L., 1978 The geochemical origin of sepiolite and kerolite at Amboseli, Kenya Contrib. Mineral. Petrol. 65 255267.CrossRefGoogle Scholar
Tardy, Y., Cheverry, C. and Fritz, B., 1974 Néoformation d’une argile magnésienne dans les dépressions interdunaires du Lac Tchad. Application aux domaines de stabilité des phyllosilicates alumineux, magnésiens et ferrifères CR. Acad. Sci. Paris 278 19992002.Google Scholar
Weaver, C. E. and Pollard, L. D., 1973 The Chemistry of Clay Minerals Amsterdam Elsevier.Google Scholar
Webb, J. A. and Finlayson, B. L., 1987 Incorporation of AL Mg, and water in opal-A: Evidence from speleothems Amer. Mineral. 72 12041210.Google Scholar
Weston, R.E. and Schwarz, H.A., 1972 Chemical Kinetics New Jersey Prentice-Hall, Englewood Cliffs.Google Scholar