Published online by Cambridge University Press: 01 July 2024
On NH4- as well as on (C2H5)3NH-montmorillonite EDA was adsorbed in protonated form. The extent of protonation depended on the relative basicities and concentrations of the interacting compounds. In the systems exposed to EDA vapor a proton transfer process took place. A similar mechanism, involving probably a water molecule which remained associated with the EDAH+ ion, occurred on air-drying (C2H5)3NH-montmorillonite treated with aqueous EDA, whereas no adsorption was observed when the suspension was washed. On the contrary EDA added, in quantities not exceeding the CEC, to a suspension of NH4-montmorillonite was adsorbed almost exclusively as EDAH22+ ion. This is explained in terms of ion-exchange between NH4+ and EDAH+ present in aqueous medium and protonation of the second amine function through the dissociation of water molecules near the clay surface.
Hydrogen-bonding between protonated and neutral EDA was observed when the extent of adsorption was higher than the extent of protonation.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.