Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T15:54:05.211Z Has data issue: false hasContentIssue false

Adsorption and Degradation of Triasulfuron on Homoionic Montmorillonites

Published online by Cambridge University Press:  28 February 2024

Alba Pusino
Affiliation:
Dipartimento di Scienze Ambientali Agrarie e Biotecnologie Agro-Alimentari, Università di Sassari, Viale Italia 39, 07100 Sassari, Italy
Ilaria Braschi
Affiliation:
Istituto di Chimica Agraria, Università di Bologna, Via Berti Pichat 11, 40127 Bologna, Italy
Carlo Gessa
Affiliation:
Istituto di Chimica Agraria, Università di Bologna, Via Berti Pichat 11, 40127 Bologna, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The adsorption and degradation of the herbicide triasulfuron [2-(2-chloroethoxy)-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide] (CMMT) on homoionic Fe3+-, Al3+-, Ca2+-, or Na+-exchanged montmorillonite in aqueous medium were studied. Ca- and Na-exchanged montmorillonite were ineffective in the adsorption and degradation of triasulfuron. The adsorption on Fe-and Al-exchanged montmorillonite was rapid, and equilibrium was attained after 5 min. Degradation of the herbicide was slow and the type of the degradation products depended on the nature of the exchangeable cations. In the presence of Fe3+-rich montmorillonite, the metabolites 2-(2-chloro-ethoxy)benzenesulfonamide (CBSA), 2-(2-chloroethoxy)-N-[[(4-hydroxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide (CHMT), and l-[2-(2-chloroethoxy)benzene-l-sulfonyl]-7-acetyl-triuret (CBAT) were the only identified products, whereas 2-amino-4-methoxy-6-methyltriazine (AMMT), CBSA, CHMT, and CBAT were the primary metabolites for the Al3+-rich montmorillonite. A Fourier transform infrared (FT-IR) study of montmorillonite samples after the interaction with triasulfuron in organic solution suggests that the hydrolysis mechanism involves the adsorption of the herbicide on the 2:1 layers.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

References

Amrein, J. and Gerber, H.R., 1985 CGA 131 ’036: A new herbicide for broad-leaved weed control in cereals Proceedings of the British Crop Protection Conference on Weeds 5562.Google Scholar
Beyer, E.M. Jr. Duffy, M.J. Hay, J.V. Schlueter, D.D., Kearney, P.C. and Kaufman, D.D., 1988 Sulfonylureas Herbicides: Chemistry, Degradation and Mode of Action, Volume 3 New York Dekker 117190.Google Scholar
Braschi, I. Calamai, L. Cremonini, M.A. Fusi, P. Gessa, C. Pantani, O. and Pusino, A., 1997 Kinetics and hydrolysis mechanism of triasulfuron. Journal of Agricultural and Food Chemistry 45 44954499 10.1021/jf970299d.CrossRefGoogle Scholar
Brown, H.M., 1990 Mode of action, crop selectivity and soil relations of the sulfonylurea herbicide. Pesticide Science 29 263281 10.1002/ps.2780290304.CrossRefGoogle Scholar
Calamai, L. Pantani, O. Pusino, A. Gessa, C. and Fusi, P., 1997 Interaction of rimsulfuron with smectities. Clays and Clay Minerals 45 15 10.1346/CCMN.1997.0450103.CrossRefGoogle Scholar
Cook, D., 1961 Vibrational spectra of pyridinium salts. Canadian Journal of Chemistry 39 20042024.CrossRefGoogle Scholar
Giles, C.H. Mac Ewan, T.H. Nakhwa, S.N. and Smith, D., 1960 Studies in adsorption: Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of the Chemical Society 111 39733993 10.1039/jr9600003973.CrossRefGoogle Scholar
Hendershot, W.H. and Duquette, M., 1986 A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Science Society of America Journal 50 605608 10.2136/sssaj1986.03615995005000030013x.CrossRefGoogle Scholar
Hirt, R.C. Schmitt, R.G. Strauss, H.L. and Koren, J.G., 1961 Spectrophotometrically determined ionization constants of derivatives of symmetric triazine. Journal of Chemical Engineering Data 6 610612 10.1021/je60011a040.CrossRefGoogle Scholar
Kowalska, M. Güler, H. and Cocke, D.L., 1994 Interactions of clay minerals with organic pollutants. Science of the Total Environment 141 223240 10.1016/0048-9697(94)90030-2.CrossRefGoogle Scholar
Mortland, M.M., Huang, P.M. and Schnitzer, M., 1986 Mechanisms of adsorption of non hu-mic organic species by clays Interactions of Soil Minerals with Natural Organics and Microbes Wisconsin Soil Science Society of America, Madison 5976.Google Scholar
Ortego, J.D.L. Kowalska, M. and Cocke, D.L., 1991 Interactions of montmorillonite with organic compounds-ad-sorptive and catalytic properties. Chemosphere 22 769798 10.1016/0045-6535(91)90052-F.CrossRefGoogle Scholar
Pantani, O. Calamai, L. and Fusi, P., 1994 Influence of clay minerals on adsorption and degradation of a sulfonylurea herbicide (cinosulfuron) Applied Clay Science 8 373387 10.1016/0169-1317(94)90026-4.CrossRefGoogle Scholar
Pantani, O. Pusino, A. Calamai, L. Gessa, C. and Fusi, P., 1996 Adsorption and degradation of rimsulfuron on Al-hectorite Journal of Agricultural and Food Chemistry 44 617621 10.1021/jf950107j.CrossRefGoogle Scholar
Pantani, O. Calamai, L. Braschi, I. Pusino, A. Fusi, P. and Gessa, C., 1997 Preliminary FT-IR studies on interactions of triasulfuron with smectites at different charge localization Agrochimica 41 130136.Google Scholar
Pouchert, C.J., 1975 The Aldrich Library of Infrared Spectra Wisconsin Aldrich Chemical Company, Milwaukee 1178.Google Scholar
Pusino, A. Gessa, C. and Kozlowski, H., 1988 Catalytic hydrolysis of quinalphos on homoionic clays Pesticide Science 24 18 10.1002/ps.2780240102.CrossRefGoogle Scholar
Sabadie, J., 1991 Alcoolyse et hydrolyse chimique acide du chlorsulfuron Weed Research 31 309316 10.1111/j.1365-3180.1991.tb01771.x.CrossRefGoogle Scholar
Sànchez-Camazano, M. and Sànchez Martin, M.J., 1983 Montmorillonite-catalyzed hydrolysis of phosmet. Soil Science 136 8993 10.1097/00010694-198308000-00004.CrossRefGoogle Scholar
Sposito, G., 1984 The Surface Chemistry of Soils. New York Oxford University Press 146.Google Scholar
Ukrainczyk, L. and Rashid, N., 1995 Irreversible sorption of nicosulfuron on clay minerals Journal of Agricultural and Food Chemistry 43 855857 10.1021/jf00052a001.CrossRefGoogle Scholar
Worthing, C.R. and Hance, R.J., 1991 The Pesticide Manual, 9th edition. UK British Crop Council, Bracknell 837.Google Scholar