Hostname: page-component-54dcc4c588-5q6g5 Total loading time: 0 Render date: 2025-09-11T04:08:37.605Z Has data issue: false hasContentIssue false

Preparation and Properties of Sepiolite-Based 3D Flame-Retardant Aerogel

Published online by Cambridge University Press:  01 January 2024

Yelei Hu
Affiliation:
Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
Tong Xu
Affiliation:
Shanghai Technical Institute of Electronics & Information, Sino-German Engineering College, No. 3098, Wahong Highway, Fengxian District, Shanghai, China
Hong Xu
Affiliation:
Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co. Ltd, Taian City 271000, Shandong Province, China
Yi Zhong
Affiliation:
Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co. Ltd, Taian City 271000, Shandong Province, China
Linping Zhang
Affiliation:
Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co. Ltd, Taian City 271000, Shandong Province, China
Bijia Wang
Affiliation:
Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co. Ltd, Taian City 271000, Shandong Province, China
Xiaofeng Sui
Affiliation:
Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co. Ltd, Taian City 271000, Shandong Province, China
Xueling Feng
Affiliation:
Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co. Ltd, Taian City 271000, Shandong Province, China
Zhiping Mao*
Affiliation:
Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co. Ltd, Taian City 271000, Shandong Province, China

Abstract

Sepiolite-based composites have great potential for application as flame-retardant and thermal-insulation material but their application and development are limited by poor mechanical properties. The objective of the present study was to combine polyvinyl alcohol (PVA) and 3-aminopropyltriethoxysilane (KH-550) with sepiolite (Sep) to improve its aerogel strength. A universal testing machine, thermogravimetry, and microcalorimetry were used to investigate the mechanical properties, thermal-stability, and flame-retardant properties, respectively, of aerogels. The results indicated that KH-550 can enhance effectively the mechanical properties and flame retardancy of aerogels. The compressive modulus of PVA/Sep vs KH-550/PVA/Sep aerogel was 209.28 vs. 474.43 kPa, the LOI index changed from 26.4 to 30.4%. The porosity of the aerogels was > 96% and the density was < 0.05 g/cm3. The thermal conductivity remained at between 0.0340 and 0.0390 W/(m·K), and the aerogel could recover to > 85% after a 50% compressive deformation. These data indicated that Sep-based aerogel would act as a flame retardant and a thermal insulating material with excellent mechanical properties.

Information

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alkan, M., Tekin, G., & Namli, H. (2005). FTIR and zeta potential measurements of sepiolite treated with some organosilanes. Microporous and Mesoporous Materials, 84, 7583.10.1016/j.micromeso.2005.05.016CrossRefGoogle Scholar
Aslam, M., Kalyar, M. A., & Raza, Z. A. (2018). Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polymer Engineering and Science, 58, 21192132.10.1002/pen.24855CrossRefGoogle Scholar
Baldermann, A., Mavromatis, V., Frick, P. M., & Dietzel, M. (2018). Effect of aqueous si/mg ratio and ph on the nucleation and growth of sepiolite at 25 degrees C. Geochimica et Cosmochimica Acta, 227, 211226.10.1016/j.gca.2018.02.027CrossRefGoogle Scholar
Cao, M., Wang, C., Xia, R., Chen, P., Miao, J., Yang, B., Qian, J., & Tang, Y. (2018). Preparation and performance of the modified high-strength/high-modulus polyvinyl alcohol fiber/polyurethane grouting materials. Construction and Building Materials, 168, 482489.10.1016/j.conbuildmat.2018.02.173CrossRefGoogle Scholar
Chen, H.-B., Chiou, B.-S., Wang, Y.-Z., & Schiraldi, D. A. (2013). Biodegradable pectin/clay aerogels. ACS Applied Materials & Interfaces, 5, 17151721.10.1021/am3028603CrossRefGoogle ScholarPubMed
Cheng, H., Li, Y., Wang, B., Mao, Z., Xu, H., Zhang, L., Zhong, Y., & Sui, X. (2018). Chemical crosslinking reinforced flexible cellulose nanofiber-supported cryogel. Cellulose, 25, 573582.10.1007/s10570-017-1548-7CrossRefGoogle Scholar
Di, Z., Ma, S., Wang, H., Guan, Z., Lian, B., Qiu, Y., & Jiang, Y. (2022). Modulation of thermal insulation and mechanical property of silica aerogel thermal insulation coatings. Coatings, 12, 1421.Google Scholar
Farooq, M., Sipponen, M. H., Seppala, A., & Osterberg, M. (2018). Eco-friendly flame-retardant cellulose nanofibril aerogels by incorporating sodium bicarbonate. ACS Applied Materials & Interfaces, 10, 2740727415.Google ScholarPubMed
Fernandez-Barranco, C., Koziol, A. E., Skrzypiec, K., Rawski, M., Drewniak, M., & Yebra-Rodriguez, A. (2016). Reprint of study of spatial distribution of sepiolite in sepiolite/polyamide6,6 nanocomposites. Applied Clay Science, 130, 5054.10.1016/j.clay.2016.06.018CrossRefGoogle Scholar
Ghanadpour, M., Wicklein, B., Carosio, F., & Wagberg, L. (2018). All-natural and highly flame-resistant freezecast foams based on phosphorylated cellulose nanofibrils. Nanoscale, 10, 40854095.10.1039/C7NR09243ACrossRefGoogle ScholarPubMed
Guo, R., Hu, C., Pan, F., Wu, H., & Jiang, Z. (2006). PVAGPTMS/TEOS hybrid pervaporation membrane for dehydration of ethylene glycol aqueous solution. Journal of Membrane Science, 281, 454462.10.1016/j.memsci.2006.04.015CrossRefGoogle Scholar
Guo, L. M., Chen, Z. L., Lv, S. Y., & Wang, S. Q. (2018). Structure and properties of BTCA cross-linked nanocellulose aerogels. Forestry Science, 54, 113120.Google Scholar
Guo, X., Qiang, X., Chen, G., Su, H., Ouyang, C., Chen, S., & Huang, D. (2022). Facile construction of flameretardant, heat-insulating agar/polyvinyl alcohol composite aerogels via in situ formation of magnesium hydroxide and palygorskite-assisted strategy. Journal of Vinyl & Additive Technology, 28, 502517.10.1002/vnl.21897CrossRefGoogle Scholar
Gupta, P., Verma, C., & Maji, P. K. (2019). Flame retardant and thermally insulating clay based aerogel facilitated by cellulose nanofibers. Journal of Supercritical Fluids, 152, 104537.10.1016/j.supflu.2019.05.005CrossRefGoogle Scholar
Hostler, S. R., Abramson, A. R., Gawryla, M. D., Bandi, S. A., & Schiraldi, D. A. (2009). Thermal conductivity of a clay-based aerogel. International Journal of Heat and Mass Transfer, 52, 665669.10.1016/j.ijheatmasstransfer.2008.07.002CrossRefGoogle Scholar
Huang, D., Wang, W., Xu, J., & Wang, A. (2012). Mechanical and water resistance properties of chitosan/poly(vinyl alcohol) films reinforced with attapulgite dispersed by high-pressure homogenization. Chemical Engineering Journal, 210, 166172.10.1016/j.cej.2012.08.096CrossRefGoogle Scholar
Jiang, P., Zhang, S., Bourbigot, S., Chen, Z., Duquesne, S., & Casetta, M. (2019). Surface grafting of sepiolite with a phosphaphenanthrene derivative and its flame-retardant mechanism on PLA nanocomposites. Polymer Degradation and Stability, 165, 6879.10.1016/j.polymdegradstab.2019.04.012CrossRefGoogle Scholar
Johnson, J. R. III., Spikowski, J., & Schiraldi, D. A. (2009). Mineralization of clay/polymer aerogels: A bioinspired approach to composite reinforcement. ACS Applied Materials & Interfaces, 1, 13051309.10.1021/am9001919CrossRefGoogle ScholarPubMed
Kang, B.-H., Lu, X., Qu, J.-P., & Yuan, T. (2019). Synergistic effect of hollow glass beads and intumescent flame retardant on improving the fire safety of biodegradable poly (lactic acid). Polymer Degradation and Stability, 164, 167176.10.1016/j.polymdegradstab.2019.04.013CrossRefGoogle Scholar
Khan, Z. I., Habib, U., Mohamad, Z. B., Rahmat, A. R. B., & Abdullah, N. A. S. B. (2022). Mechanical and thermal properties of sepiolite strengthened thermoplastic polymer nanocomposites: A comprehensive review. Alexandria Engineering Journal, 61, 975990.10.1016/j.aej.2021.06.015CrossRefGoogle Scholar
Kistler, S. S. (1931). Coherent expanded aerogels and jellies. Nature, 127, 741.10.1038/127741a0CrossRefGoogle Scholar
Konuklu, Y., & Ersoy, O. (2016). Preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage. Applied Thermal Engineering, 107, 575582.10.1016/j.applthermaleng.2016.07.012CrossRefGoogle Scholar
Li, X., Wang, Q., Li, H., Ji, H., Sun, X., & He, J. (2013). Effect of sepiolite fiber on the structure and properties of the sepiolite/silica aerogel composite. Journal of Sol-Gel Science and Technology, 67, 646653.10.1007/s10971-013-3124-4CrossRefGoogle Scholar
Li, L., Chen, K., & Zhang, J. (2022). Superelastic clay/silicone composite sponges and their applications for oil/water separation and solar interfacial evaporation. Langmuir, 38, 18531859.10.1021/acs.langmuir.1c03043CrossRefGoogle ScholarPubMed
Liu, L., Chen, H., Shiko, E., Fan, X., Zhou, Y., Zhang, G., Luo, X., & Hu, X. (2018). Low-cost DETA impregnation of acid-activated sepiolite for CO2 capture. Chemical Engineering Journal, 353, 940948.10.1016/j.cej.2018.07.086CrossRefGoogle Scholar
Liu, K., Zhang, W., Cheng, H., Luo, L., Wang, B., Mao, Z., Sui, X., & Feng, X. (2021). A nature-inspired monolithic integrated cellulose aerogel-based evaporator for efficient solar desalination. ACS Applied Materials & Interfaces, 13, 1061210622.10.1021/acsami.0c22245CrossRefGoogle ScholarPubMed
Lu, H. J., Liang, G. Z., Zhang, B. Y., Chen, X. B., & Ma, X. Y. (2004). Study on high-performance epoxy resin based composite reinforced by organic sepiolite. China Plastics, 05, 5155.Google Scholar
Luo, Z. H., Ning, H. X., Zhou, X. Y., & Yuan, B. H. (2022). Efficient flame-retardant biomass aerogel endowed with graphene oxide interconnected networks for ultrasensitive fire warning. Materials Letters, 318, 132277.10.1016/j.matlet.2022.132237CrossRefGoogle Scholar
Lv, P., Liu, C., & Rao, Z. (2017). Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications. Renewable & Sustainable Energy Reviews, 68, 707726.10.1016/j.rser.2016.10.014CrossRefGoogle Scholar
Madyan, O. A., & Fan, M. (2017). Temperature induced nature and behaviour of clay-PVA colloidal suspension and its aerogel composites. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 529, 495502.Google Scholar
Madyan, O. A., & Fan, M. (2018). Hydrophobic clay aerogel composites through the implantation of environmentally friendly water-repellent agents. Macromolecules, 51, 1011310120.10.1021/acs.macromol.8b02218CrossRefGoogle Scholar
Madyan, O. A., & Fan, M. (2019). Organic functionalization of clay aerogel and its composites through in-situ crosslinking. Applied Clay Science, 168, 374381.10.1016/j.clay.2018.11.017CrossRefGoogle Scholar
Madyan, O. A., Fan, M., Feo, L., & Hui, D. (2016). Enhancing mechanical properties of clay aerogel composites: An overview. Composites Part B-Engineering, 98, 314329.10.1016/j.compositesb.2016.04.059CrossRefGoogle Scholar
Pang, Y., Yu, Z., Chen, L., & Chen, H. (2021). Superhydrophobic polyurethane sponges modified by sepiolite for efficient oil-water separation. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 627, 127175.Google Scholar
Pojanavaraphan, T., Schiraldi, D. A., & Magaraphan, R. (2010). Mechanical, rheological, and swelling behavior of natural rubber/montmorillonite aerogels prepared by freeze-drying. Applied Clay Science, 50, 271279.10.1016/j.clay.2010.08.020CrossRefGoogle Scholar
Pojanavaraphan, T., Liu, L., Ceylan, D., Okay, O., Magaraphan, R., & Schiraldi, D. A. (2011). Solution cross-linked natural rubber (nr)/clay aerogel composites. Macromolecules, 44, 923931.10.1021/ma102443kCrossRefGoogle Scholar
Qiu, S., Li, Y., Li, G., Zhang, Z., Li, Y., & Wu, T. (2019). Robust superhydrophobic sepiolite-coated polyurethane sponge for highly efficient and recyclable oil absorption. ACS Sustainable Chemistry & Engineering, 7, 55605567.10.1021/acssuschemeng.9b00098CrossRefGoogle Scholar
Rytwo, G., Nir, S., Margulies, L., Casal, B., Merino, J., & Ruiz-Hitzky, E. (1998). Adsorption of monovalent organic cations on sepiolite: Experimental results and model calculations. Clays and Clay Minerals, 46, 340348.10.1346/CCMN.1998.0460313CrossRefGoogle Scholar
Salehi, M. H., Golbaten-Mofrad, H., Jafari, S. H., Goodarzi, V., Entezari, M., Hashemi, M., & Zamanlui, S. (2021). Electrically conductive biocompatible composite aerogel based on nanofibrillated template of bacterial cellulose/polyaniline/nano-clay. International Journal of Biological Macromolecules, 173, 467480.Google ScholarPubMed
Sanguanwong, A., Flood, A. E., Ogawa, M., Martin-Sampedro, R., Darder, M., Wicklein, B., Aranda, P., & Ruiz-Hitzky, E. (2021a). Hydrophobic composite foams based on nanocellulose-sepiolite for oil sorption applications. Journal of Hazardous Materials, 417, 126068.10.1016/j.jhazmat.2021.126068CrossRefGoogle Scholar
Sanguanwong, A., Flood, A. E., Ogawa, M., Martin-Sampedro, R., Darder, M., Wicklein, B., Aranda, P., & Ruiz-Hitzky, E. (2021b). Hydrophobic composite foams based on nanocellulose-sepiolite for oil sorption applications. Journal of Hazardous Materials, 417, 106026.10.1016/j.jhazmat.2021.126068CrossRefGoogle Scholar
Shen, Q., Ouyang, J., Zhang, Y., & Yang, H. (2017). Lauric acid/modified sepiolite composite as a form-stable phase change material for thermal energy storage. Applied Clay Science, 146, 1422.10.1016/j.clay.2017.05.035CrossRefGoogle Scholar
Simon-Herrero, C., Peco, N., Romero, A., Valverde, J. L., & Sanchez-Silva, L. (2019). PVA/nanoclay/graphene oxide aerogels with enhanced sound absorption properties. Applied Acoustics, 156, 4045.10.1016/j.apacoust.2019.06.023CrossRefGoogle Scholar
Sun, J., Wu, Z., An, B., Ma, C., Xu, L., Zhang, Z., Luo, S., Li, W., & Liu, S. (2021). Thermal-insulating, flame-retardant and mechanically resistant aerogel based on bio-inspired tubular cellulose. Composites Part B-Engineering, 220, 108997.10.1016/j.compositesb.2021.108997CrossRefGoogle Scholar
Turhan, Y., Turan, P., Dogan, M., Alkan, M., Namli, H., & Demirbas, O. (2008). Characterization and adsorption properties of chemically modified sepiolite. Industrial & Engineering Chemistry Research, 47, 18831895.10.1021/ie070506rCrossRefGoogle Scholar
Wang, H., Cao, M., Zhao, H.-B., Liu, J.-X., Geng, C.-Z., & Wang, Y.-Z. (2020). Double-cross-linked aerogels towards ultrahigh mechanical properties and thermal insulation at extreme environment. Chemical Engineering Journal, 399, 125698.10.1016/j.cej.2020.125698CrossRefGoogle Scholar
Wang, L., Liang, W., Liu, Y., Wang, Y., Mu, W., Wang, C., Sun, H., Zhu, Z., & Li, A. (2022). Carbonized clay pectinbased aerogel for light-to-heat conversion and energy storage. Applied Clay Science, 224, 106524.10.1016/j.clay.2022.106524CrossRefGoogle Scholar
Wu, N.-J., Niu, F.-K., Liang, W.-C., & Xia, M.-F. (2019). Highly efficient flame-retardant and low-smoke-toxicity poly(vinylalcohol)/alginate/montmorillonite composite aerogels by two-step crosslinking strategy. Carbohydrate Polymers, 221, 221230.Google Scholar
Wu, C.-R., Hong, Z.-Q., Zhan, B.-J., Tang, W., Cui, S.-C., & Kou, S.-C. (2022). Effect of acid treatment on the reactivity of natural sepiolite used as a supplementary cementitious material. Construction and Building Materials, 316, 125860.10.1016/j.conbuildmat.2021.125860CrossRefGoogle Scholar
Xie, Y., Hill, C. A. S., Xiao, Z., Militz, H., & Mai, C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A-Applied Science and Manufacturing, 41, 806819.10.1016/j.compositesa.2010.03.005CrossRefGoogle Scholar
Zhao, Y.-W., Tian, M.-Z., & Huang, P. (2021). Starch/clay aerogel reinforced by cellulose nanofibrils for thermal insulation. Cellulose, 28, 35053513.10.1007/s10570-021-03750-9CrossRefGoogle Scholar
Zhao, F., Liu, H., Li, H., Cao, Y., Hua, X., Ge, S., He, Y., Jiang, C., & He, D. (2022). Cogel strategy for the preparation of a “thorn”-like porous halloysite/gelatin composite aerogel with excellent mechanical properties and thermal insulation. ACS Applied Materials & Interfaces, 14, 1776317773.10.1021/acsami.1c23647CrossRefGoogle ScholarPubMed
Zhu, T., Zhao, X., Yi, M., Xu, S., & Wang, Y. (2022). Ternary cross-linked PVA-APTES-ZIF-90 membrane for enhanced ethanol dehydration performance. Advanced Composites and Hybrid Materials, 5, 91103.10.1007/s42114-021-00218-zCrossRefGoogle Scholar