Hostname: page-component-cb9f654ff-mnl9s Total loading time: 0 Render date: 2025-09-05T05:37:36.299Z Has data issue: false hasContentIssue false

Optimizing the mechanical strength of adobe bricks

Published online by Cambridge University Press:  01 January 2024

A. Schicker*
Affiliation:
Department of Geodynamics and Sedimentology, University of Vienna Althanstrasse 14 1090 Vienna Austria
S. Gier
Affiliation:
Department of Geodynamics and Sedimentology, University of Vienna Althanstrasse 14 1090 Vienna Austria

Abstract

Ecologic building materials such as adobe bricks have become of greater economic importance in recent years. In the present work, the addition of selected materials to improve the compressive and bending strengths of adobe bricks was tested. The raw material (loam UD) was analyzed for its mineralogical and chemical composition. The loam studied consisted of quartz, feldspar, and the clay minerals chlorite, vermiculite, illite, and kaolinite. Prerequisites for using this loam for brick making were its grain-size distribution and the absence of expandable clay minerals.

To optimize the compressive and bending strengths of the adobe bricks, seven natural and ‘eco-friendly’ synthetic additives were admixed with the raw material and homogenized.

From this material, small adobe bricks and bars were made. One series of bricks and bars was made without additives but instead was coated with a hydrophobic impregnation cream. The bricks were stored for up to 20 days at 100 and 75% relative humidity (RH). After 1, 5, and 20 days, the compressive and bending strengths were measured to identify the critical humidity level for brick strength. The compressive and bending strengths of loam UD at dryconditions without additives showed values of 9 N/mm2 and 4.8 N/mm2, respectively. With some of the additives, the strength improved by up to 30%. The greatest increases in strength were achieved by mixing the loam with Acronal S650. Finely ground trass and diatomite also increased the dry strength. After storage at high levels of RH, these mixtures lost >50% strength. In contrast, the loam mixed with blast-furnace slag has a small initial strength but showed the smallest decreases in strength after exposure to high levels of RH.

Information

Type
Article
Copyright
© The Clay Minerals Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Berge, B, The Ecology of Building Materials 2009 Oxford, UK Architectural Press 10.4324/9780080949741 421 pp.CrossRefGoogle Scholar
Binici, H Aksogan, O Shah, T, Investigation of fibre reinforced mud brick as a building material Construction and Building Materials 2005 19 313318 10.1016/j.conbuildmat.2004.07.013.CrossRefGoogle Scholar
DIN 51033, Prüfung keramischer Roh- und Werkstoffe, Bestimmung der Korngrößen durch Siebung und Sedimentation, Verfahren nach Andreasen- Blatt 1 1962 Berlin DIN Deutsches Institut für Normung e.V., Beuth Verlag GmbH.Google Scholar
DIN 4226-1/2 (2002) Gesteinskörnungen für Beton und Mörtel; Zuschlag für Beton; Prüfung von Zuschlag mit dichtem oder porigem Gefüge.Google Scholar
Dondi, M Guarini, G Raimondo, M Venturi, I, Orimulsion flyashinclaybricks — part 2: technological behaviour of clay/ash mixtures Journal of the European Ceramic Society 2002 22 17371747 10.1016/S0955-2219(01)00494-0.CrossRefGoogle Scholar
Füchtbauer, H, Sedimente und Sedimentgesteine 1988 Stuttgart, Germany Schweizerbart 513 pp.Google Scholar
Grosse, CU, Advances in Construction Material 2007 2007 Berlin Springer 10.1007/978-3-540-72448-3 497 pp.CrossRefGoogle Scholar
Lee, K-C Her, J-H Kwon, S-K, Red clay composites reinforced with polymeric binders Construction and Building Materials 2008 22 22922298 10.1016/j.conbuildmat.2007.10.008.CrossRefGoogle Scholar
Lide, DR, CRC Handbook of Chemistry and Physics 2009 90th Boca Raton, Florida CRC Press/Taylor and Francis 2804 pp.Google Scholar
Meier, LP Kahr, G, Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tetraethylenepentamine Clays and Clay Minerals 1999 47 386388 10.1346/CCMN.1999.0470315.CrossRefGoogle Scholar
Minke, G, Das neue Lehmbau-Handbuch: Baustoffkunde. Konstruktionen. Lehmarchitektur 2004 Staufen bei Freiburg, Germany Ökobuch Verlag 349 pp.Google Scholar
Moore, DM Reynolds, RC Jr., X-ray Diffraction and the Identification and Analysis of Clay Minerals 1997 New York Oxford University Press 378 pp.Google Scholar
Morel, JC Pkla, A Walker, P, Compressive strength testing of compressed earth blocks Construction and Building Materials 2007 21 303309 10.1016/j.conbuildmat.2005.08.021.CrossRefGoogle Scholar
ÖNORM B 4412, Erd- und Grundbau; Untersuchung von Bodenproben; Korngrößenverteilung 1974 Wien Österreichisches Normungsinstitut.Google Scholar
ÖNORM EN 1052-2, Prüfverfahren für Mauerwerk — Teil 2: Bestimmung der Biegezugfestigkeit 1999 Wien Österreichisches Normungsinstitut.Google Scholar
ÖNORM EN 772-1, Prüfverfahren für Mauersteine — Teil 1: Bestimmung der Druckfestigkeit 2000 Wien Osterreichisches Normungsinstitut.Google Scholar
Pineda-Piñón, J Vega-Durán, JT Manzano-Ramírez, A Pérez-Robles, JF Balmori-Ramírez, H Hernández-Landaverde, MA, Enhancement of mechanical and hydrophobic properties of Adobes for Building Industry by the addition of polymeric agents Building and Environment 2007 42 877883 10.1016/j.buildenv.2005.10.009.CrossRefGoogle Scholar
Salmang, H Scholze, H, Keramik — Teil 2: Keramische Werkstoffe. Auflage 6 1983 Berlin Springer.Google Scholar
Schultz, LG, Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre shale US Geological Survey Professional Paper 1964 0391-C C1C31.Google Scholar
Tucker, ME, Sedimentary Petrology 2001 Oxford Blackwell Science 262 pp.Google Scholar
Wimmer-Frey, I Letouzè-Zezula, G Müller, HW Schwaighofer, B, Tonlagerstätten und Tonvorkommen Österreichs. Fachverband d. Stein- u. Keramischen Industrie u. Verband d. österr 1992 Geol. B.-A., Wien Ziegelwerke.Google Scholar