Hostname: page-component-cb9f654ff-5jtmz Total loading time: 0 Render date: 2025-08-30T06:28:36.183Z Has data issue: false hasContentIssue false

Influence of force field on clay–water contact angle determination using molecular dynamics

Published online by Cambridge University Press:  17 March 2025

L. Guérin
Affiliation:
Sorbonne University, Laboratoire PHENIX UMR CNRS 8234, 4 place Jussieu, case 51, 75005 Paris, France
T. Bernhard
Affiliation:
Sorbonne University, Laboratoire PHENIX UMR CNRS 8234, 4 place Jussieu, case 51, 75005 Paris, France
L. Michot
Affiliation:
Sorbonne University, Laboratoire PHENIX UMR CNRS 8234, 4 place Jussieu, case 51, 75005 Paris, France
E. Ferrage
Affiliation:
IC2MP, Equipe HydrASA, UMR 7285 CNRS/Université de Poitiers, 86073 Poitiers, France
F. Claret
Affiliation:
BRGM, 3 avenue claude Guillemin, BP 36009 - 45060 Orléans Cedex 2, France
V. Marry*
Affiliation:
Sorbonne University, Laboratoire PHENIX UMR CNRS 8234, 4 place Jussieu, case 51, 75005 Paris, France
*
Corresponding author: V. Marry; Email: virginie.marry@sorbonne-universite.fr

Abstract

Clay minerals wettability is a key property for predicting water distribution and pollutant migration in natural or artificial materials. This study attempted to understand the difference in hydrophilicity due to the exchange of structural hydroxyl groups by fluorine atoms, observed in a number of clays. To this end, contact angles of water droplets on hydroxylated and fluorinated talcs were calculated from molecular simulations with two different force fields (one non-polarizable and one polarizable). In parallel, careful measurements of contact angles on a hydroxylated talc monocrystal were undertaken in order to assess the ability of the force fields to reproduce experiments. As expected, fluorinated talc was slightly more hydrophobic than hydroxylated talc for both force fields. Moreover, although the two force fields lead to fluid properties at the interface that were significantly different, the associated contact angles (and related works of adhesion) remained quite close to each other and to contact angles obtained on similar silica-type surfaces. These contact angles overestimated the experimental ones. This could be tentatively assigned to the presence of steps on monocrystal surfaces that could slightly increase the hydrophilicity of the surface, resulting in slightly lower contact angles. When analyzing more carefully the differences between both force fields, it appeared that the use of a polarizable force field resulted in a higher depletion of the fluid close to the surface. This could indicate less attraction between the fluid and the solid and a lesser constraint for the fluid. The combination of these two effects leads to a lower entropy loss and consequently to slightly higher work of adhesion.

Information

Type
Original Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Acharya, H., Vembanur, S., Jamadagni, S. N., & Garde, S. (2010). Mapping hydrophobicity at the nanoscale: Applications to heterogeneous surfaces and proteins. Faraday Discussions, 146, 353365. https://doi.org/10.1039/B927019ACrossRefGoogle ScholarPubMed
Ashbaugh, H. S., Vats, M., & Garde, S. (2021). Bridging gaussian density fluctuations from microscopic to macroscopic volumes: Applications to non-polar solute hydration thermodynamics. The Journal of Physical Chemistry B, 125(29), 81528164. https://doi.org/10.1021/acs.jpcb.1c04087CrossRefGoogle ScholarPubMed
Atluri, V., Jin, J., Shrimali, K., Dang, L., Wang, X., & Miller, J. D. (2019). The hydrophobic surface state of talc as influenced by aluminum substitution in the tetrahedral layer. The Journal of Colloid and Interface Science, 536, 737748. https://doi.org/10.1016/j.jcis.2018.10.085CrossRefGoogle ScholarPubMed
Bistafa, C., Surblys, D., Kusudo, H., & Yamaguchi, Y. (2021). Water on hydroxylated silica surfaces: Work of adhesion, interfacial entropy, and droplet wetting. The Journal of Chemical Physics, 155(6), 064703. https://doi.org/10.1063/5.0056718CrossRefGoogle ScholarPubMed
Bourg, I. C., Lee, S. S., Fenter, P., & Tournassat, C. (2017). Stern layer structure and energetics at mica–water interfaces.The Journal of Physical Chemistry C, 121(17), 94029412. https://doi.org/10.1021/acs.jpcc.7b01828CrossRefGoogle Scholar
Brigatti, M. F., Galan, E., & Theng, B. (2006). Structure and mineralogy of clay minerals. InBergaya, : F. & Lagaly, G. (Eds.), Handbook of clay science 1. Elsevier, Amsterdam.Google Scholar
Cassie, A. B. D., & Baxter, S. (1944). Wettability of porous surfaces.Transactions of The Faraday Society, 40, 546551. https://doi.org/10.1039/TF9444000546CrossRefGoogle Scholar
Charlet, L., Alt-Epping, P., Wersin, P., & Gilbert, B. (2017). Diffusive transport and reaction inclay rocks: A storage (nuclear waste, CO2, H2), energy (shale gas) and water quality issue [Tribute to Professor Garrison Sposito: An Exceptional Hydrologist and Geochemist]. Advances in Water Resources, 106, 3959. https://doi.org/10.1016/j.advwatres.2017.03.019CrossRefGoogle Scholar
Cygan, R. T., Liang, J.-J., & Kalinichev, A. G. (2004). Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. The Journal of Physical Chemistry B, 108(4), 12551266. https://doi.org/10.1021/jp0363287CrossRefGoogle Scholar
Dang, L. X., & Chang, T. (1997). Molecular dynamics study of water clusters, liquid, and liquid-vapor interface of water with many-body potentials. The Journal of Chemical Physics, 106(19), 81498159. https://doi.org/10.1063/1.473820CrossRefGoogle Scholar
Daub, C. D., Cann, N. M., Bratko, D., & Luzar, A. (2018). Electrokinetic flow of an aqueous electrolyte in amorphous silica nanotubes. Physical Chemistry Chemical Physics, 20, 2783827848. https://doi.org/10.1039/C8CP03791DCrossRefGoogle ScholarPubMed
Dazas, B., Lanson, B., Breu, J., Robert, J.-L., Pelletier, M., & Ferrage, E. (2013). Smectite fluorination and its impact on interlayer water content and structure: A way to fine tune the hydrophilicity of clay surfaces? Microporous and Mesoporous Materials, 181, 233247. https://doi.org/10.1016/j.micromeso.2013.07.032CrossRefGoogle Scholar
Douillard, J., Zajac, J., Malandrini, H., & Clauss, F. (2002). Contact angle and film pressure: Study of a talc surface. The Journal of Colloid and Interface Science, 255(2), 341351. https://doi.org/10.1006/jcis.2002.8611CrossRefGoogle ScholarPubMed
Du, H., & Miller, J. (2007). A molecular dynamics simulation study of water structure and adsorption states at talc surfaces. The International Journal of Mineral Processing, 84(1), 172184. https://doi.org/10.1016/j.minpro.2006.09.008CrossRefGoogle Scholar
Evans, R., & Stewart, M. C. (2015). The local compressibility of liquids near non-adsorbing substrates: A useful measure of solvophobicity and hydrophobicity? The Journal of Physics: Condensed Matter, 27(19), 194111. https://doi.org/10.1088/0953-8984/27/19/194111Google ScholarPubMed
Ferrage, E. (2016). Investigation of the interlayer organization of water and ions in smectite from the combined use of diffraction experiments and molecular simulations. A review of methodology, applications, and perspectives. Clays and Clay Minerals, 64(4), 348373. https://doi.org/10.1346/CCMN.2016.0640401CrossRefGoogle Scholar
Ferrage, E., Sakharov, B., Michot, L., Delville, A., Bauer, A., Lanson, B., Grangeon, S., Frapper, G., Jimenez-Ruiz, M., & Cuello, G. (2011). Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge. part 2. toward a precise coupling between molecular simulations and diffraction data. The Journal of Physical Chemistry C, 115(5), 18671881. https://doi.org/10.1021/jp105128rCrossRefGoogle Scholar
Ferrage, E., Seine, G., Gaillot, A., Petit, S., De Parsseval, P., Boudet, A., Lanson, B., Ferret, J., & Martin, F. (2006). Structure of the 001 talc surface as seen by atomic force microscopy: comparison with X-ray and electron diffraction results. The European Journal of Mineralogy, 18(4), 483491. https://doi.org/10.1127/0935-1221/2006/0018-0483CrossRefGoogle Scholar
Gao, P., Zhang, Y., Liu, X., & Lu, X. (2024). Mechanistic understanding of dehydroxylation reaction of smectites: Insights from reactive force field (reaxff) molecular dynamics simulation. American Mineralogist. https://doi.org/10.2138/am-2024-9445CrossRefGoogle Scholar
Giese, R. F., Costanzo, P. M., & Van Oss, C. J. (1991). The surface free energies of talc and pyrophyllite. Physics and Chemistry of Minerals, 17, 611616. https://doi.org/10.1007/BF00203840CrossRefGoogle Scholar
Gimmi, T., & Churakov, S. (2019). Water retention and diffusion in unsaturated clays: Connecting atomistic and pore scale simulations. Applied Clay Science, 175, 169183. https://doi.org/10.1016/j.clay.2019.03.035CrossRefGoogle Scholar
Godawat, R., Jamadagni, S. N., & Garde, S. (2009). Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations. Proceedings of the National Academy of Sciences, 106(36), 1511915124. https://doi.org/10.1073/pnas.0902778106CrossRefGoogle ScholarPubMed
Hånde, R., Ramothe, V., Tesson, S., Dazas, B., Ferrage, E., Lanson, B., Salanne, M., Rotenberg, B., & Marry, V. (2018). Classical polarizable force field to study hydrated hectorite: Optimization on DFT calculations and validation against WRD data.Minerals, 8(5). https://doi.org/10.3390/min8050205Google Scholar
Heinz, H., Koerner, H., Anderson, K., Vaia, R., & Farmer, B. L. (2005). Force field for mica-type silicates and dynamics of octadecylammonium chains grafted to montmorillonite. Chemistry of Materials, 17(23), 56585669. https://doi.org/10.1021/cm0509328CrossRefGoogle Scholar
Hendricks, S. B., Nelson, R. A., & Alexander, L. T. (1940). Hydration mechanism of the clay mineral montmorillonite saturated with various cations. The Journal of the American Chemical Society, 62(6), 14571464. https://doi.org/10.1021/ja01863a037CrossRefGoogle Scholar
Jamadagni, S. N., Godawat, R., & Garde, S. (2011). Hydrophobicity of proteins and interfaces: Insights from density fluctuations. Annual Review of Chemical and Biomolecular Engineering, 2, 147171. https://doi.org/10.1146/annurev-chembioeng-061010-114156CrossRefGoogle ScholarPubMed
Kaggwa, G. B., Huynh, L., Ralston, J., & Bremmell, K. (2006). The influence of polymer structure and morphology on talc wettability. Langmuir, 22(7), 32213227. https://doi.org/10.1021/la052303iCrossRefGoogle ScholarPubMed
Kamath, G., Deshmukh, S. A., & Sankaranarayanan, S. K. R. S. (2013). Comparison of select polarizable and non-polarizable water models in predicting solvation dynamics of water confined between MgO slabs. The Journal of Physics: Condensed Matter, 25(30), 305003. https://doi.org/10.1088/0953-8984/25/30/305003Google ScholarPubMed
Koishi, A., Lee, S. S., Fenter, P., Fernandez-Martinez, A., & Bourg, I. C. (2022). Water adsorption on mica surfaces with hydrophilicity tuned by counterion types (Na, K, and Cs) and structural fluorination. The Journal of Physical Chemistry C, 126(38), 1644716460. https://doi.org/10.1021/acs.jpcc.2c04751CrossRefGoogle Scholar
Landais, P. (2006). Advances in geochemical research for the underground disposal of high-level, long-lived radioactive waste in a clay formation [Extended Abstracts presented at the 7th Symp. on the Geochemistry of the EarthÕs Surface (GES-7)].The Journal of Geochemical Exploration, 88(1), 3236. https://doi.org/10.1016/j.gexplo.2005.08.011CrossRefGoogle Scholar
Le Crom, S., Tournassat, C., Robinet, J., & Marry, V. (2020). Influence of polarizability on the prediction of the electrical double layer structure in a clay mesopore: A molecular dynamics study. The Journal of Physical Chemistry C, 124(11), 62216232. https://doi.org/10.1021/acs.jpcc.0c00190CrossRefGoogle Scholar
Leroy, F., Liu, S., & Zhang, J. (2015). Parametrizing non bonded interactions from wetting experiments via the work of adhesion: Example of water on graphene surfaces.The Journal of Physical Chemistry C, 119(51), 2847028481. https://doi.org/10.1021/acs.jpcc.5b10267Google Scholar
Liimatainen, H., Ezekiel, N., Sliz, R., Ohenoja, K., Sirviš, J. A., Berglund, L., Hormi, O., & Ni-inimŠki, J. (2013). High-strength nanocellulose - talc hybrid barrier films. ACS Applied Materials & Interfaces, 5(24), 1341213418. https://doi.org/10.1021/am4043273CrossRefGoogle ScholarPubMed
Maibaum, L., & Chandler, D. (2007). Segue between favorable and unfavorable solvation. The Journal of Physical Chemistry B, 111(30), 90259030. https://doi.org/10.1021/jp072266zCrossRefGoogle ScholarPubMed
Malikova, N., Cadone, A., Dubois, E., Marry, V., Durand-Vidal, S., Turq, P., Breu, J., Longeville, S., & Zanotti, J.-M. (2007). Water diffusion in a synthetic hectorite clay studied by quasi-elastic neutron scattering. The Journal of Physical Chemistry C, 111(47), 1760317611. https://doi.org/10.1021/jp0748009CrossRefGoogle Scholar
Marin-Laflèche, A., Haefele, M., Scalfi, L., Coretti, A., Dufils, T., Jeanmairet, G., Reed, S. K.,Serva, A., Berthin, R., Bacon, C., Bonella, S., Rotenberg, B., Madden, P. A., & Salanne, M. (2020). Metalwalls: A classical molecular dynamics software dedicated to the simulation of electrochemical systems. The Journal of Open Source Software, 5(53), 2373. https://doi.org/10.21105/joss.02373CrossRefGoogle Scholar
Marry, V., Dubois, E., Malikova, N., Breu, J., & Haussler, W. (2013). Anisotropy of water dynamics in clays: Insights from molecular simulations for experimental QENS analysis. The Journal of Physical Chemistry C, 117(29), 1510615115. https://doi.org/10.1021/jp403501hCrossRefGoogle Scholar
Marry, V., Dubois, E., Malikova, N., Durand-Vidal, S., Longeville, S., & Breu, J. (2011). Waterdynamics in hectorite clays: Infuence of temperature studied by coupling neutron spin echo and molecular dynamics. Environmental Science & Technology, 45(7), 28502855. https://doi.org/10.1021/es1031932CrossRefGoogle Scholar
Marry, V., Le Crom, S., Ferrage, E., Michot, L., Farago, B., Delville, A., & Dubois, E. (2024). Role of cationic organization on water dynamics in saponite clays.The Journal of Physical Chemistry C, 128(10), 42334244. https://doi.org/10.1021/acs.jpcc.3c05150CrossRefGoogle Scholar
Marry, V., Malikova, N., Cadone, A., Dubois, E., Durand-Vidal, S., Turq, P., Breu, J., Longeville, S., & Zanotti, J.-M. (2008). Water diffusion in a synthetic hectorite by neutron scattering- beyond the isotropic translational model. The Journal of Physics: Condensed Matter, 20(10), 104205. https://doi.org/10.1088/0953-8984/20/10/104205Google Scholar
Martin, F., Micoud, P., Delmotte, L., Marichal, C., Dred, R., Parseval, P., Mari, A., Fortune, J.-P., Salvi, S., Beziat, D., Grauby, O., & Ferret, J. (1999). The structural formula of talc from the Trimouns deposit, Pyrenees, france. Canadian Mineralogist, 37, 9971006.Google Scholar
Mering, J. (1946). On the hydration of montmorillonite. Transactions of the Faraday Society, 42, B205B219. https://doi.org/10.1039/TF946420B205CrossRefGoogle Scholar
Michot, L. J., Villieras, F., Francois, M., Yvon, J., Le Dred, R., & Cases, J. M. (1994). The structural microscopic hydrophilicity of talc. Langmuir, 10(10), 37653773. https://doi.org/10.1021/la00022a061CrossRefGoogle Scholar
Monroe, J., Barry, M., De Stefano, A., Aydogan Gokturk, P., Jiao, S., Robinson-Brown, D., Webber, T., Crumlin, E. J., Han, S., & Shell, M. S. (2020). Water structure and properties at hydrophilic and hydrophobic surfaces. Annual Review of Chemical and Biomolecular Engineering, 11, 523557. https://doi.org/10.1146/annurev-chembioeng-120919-114657CrossRefGoogle ScholarPubMed
Nalaskowski, J., Abdul, B., Du, H., & Miller, J. (2007). Anisotropic character of talc surfaces as revealed by streaming potential measurements, atomic force microscopy, molecular dynamics simulations and contact angle measurements. Canadian Metallurgical Quarterly, 46(3), 227235. https://doi.org/10.1179/cmq.2007.46.3.227CrossRefGoogle Scholar
Pitman, M., & van Duin, A. T. (2012). Dynamics of confined reactive water in smectite clay-zeolite composites. The Journal of the Americal Chemical Society, 134(6), 30423053. https://doi.org/10.1021/ja208894mCrossRefGoogle ScholarPubMed
Plimpton, S. (1995). Fast parallel algorithms for short-range molecular dynamics. The Journal of computational physics, 117(1), 119.10.1006/jcph.1995.1039CrossRefGoogle Scholar
Ravipati, S., Aymard, B., Kalliadasis, S., & Galindo, A. (2018). On the equilibrium contact angle of sessile liquid drops from molecular dynamics simulations. The Journal of Chemical Physics, 148(16), 164704.10.1063/1.5021088CrossRefGoogle ScholarPubMed
Rotenberg, B., Patel, A. J., & Chandler, D. (2011). Molecular explanation for why talc surfaces can be both hydrophilic and hydrophobic. The Journal of the American Chemical Society, 133(50), 2052120527. https://doi.org/10.1021/ja208687aCrossRefGoogle ScholarPubMed
Sato, T., Watanabe, T., & Otsuka, R. (1992). Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites. Clays and Clay Minerals, 40, 103113. https://doi.org/10.1346/CCMN.1992.0400111CrossRefGoogle Scholar
Skipper, N. T., Refson, K., & McConnell, J. D. C. (1989). Computer calculation of water-clay interactions using atomic pair potentials. Clay Minerals, 24(2), 411–25. https://www.cambridge.org/core/journals/clay-minerals/article/abs/computer-calculation-of-waterclay-interactions-using-atomic-pair-potentials/0CF5AD11B100771F586E2DDE3A09727E 10.1180/claymin.1989.024.2.16CrossRefGoogle Scholar
Surblys, D., Leroy, F., Yamaguchi, Y., & Müller-Plathe, F. (2018). Molecular dynamics analysis of the influence of Coulomb and van der Waals interactions on the work of adhesion at the solid-liquid interface. The Journal of Chemical Physics, 148(13), 134707. https://doi.org/10.1063/1.5019185CrossRefGoogle Scholar
Szczerba, M., Kalinichev, A. G., & Kowalik, M. (2020). Intrinsic hydrophobicity of smectite basal surfaces quantitatively probed by molecular dynamics simulations. Applied Clay Science, 188, 105497. https://doi.org/10.1016/j.clay.2020.105497CrossRefGoogle Scholar
Tazi, S., Boţan, A., Salanne, M., Marry, V., Turq, P., & Rotenberg, B. (2012). Diffusion coefficient and shear viscosity of rigid water models. The Journal of Physics: Condensed Matter, 24(28), 284117. https://doi.org/10.1088/0953-8984/24/28/284117Google ScholarPubMed
Tazi, S., Molina, J. J., Rotenberg, B., Turq, P., Vuilleumier, R., & Salanne, M. (2012). A transferable ab initio based force field for aqueous ions. The Journal of Chemical Physics, 136(11). https://doi.org/10.1063/1.3692965CrossRefGoogle ScholarPubMed
Teleman, O., Jšnsson, B., & Engstršm, S. (1987). A molecular dynamics simulation of a water model with intramolecular degrees of freedom. Molecular Physics, 60(1), 193203. https://doi.org/10.1080/00268978700100141CrossRefGoogle Scholar
Tesson, S., Louisfrema, W., Salanne, M., Boutin, A., Ferrage, E., Rotenberg, B., & Marry, V.(2018). Classical polarizable force field to study hydrated charged clays and zeolites. The Journal of Physical Chemistry C, 122(43), 2469024704. https://doi.org/10.1021/acs.jpcc.8b06230CrossRefGoogle Scholar
Tesson, S., Louisfrema, W., Salanne, M., Boutin, A., Rotenberg, B., & Marry, V. (2017). Classical polarizable force field to study dry charged clays and zeolites.The Journal of Physical Chemistry C, 121(18), 98339846. https://doi.org/10.1021/acs.jpcc.7b00270CrossRefGoogle Scholar
Tesson, S., Salanne, M., Rotenberg, B., Tazi, S., & Marry, V. (2016). Classical polarizable forcefield for clays: Pyrophyllite and talc. The Journal of Physical Chemistry C, 120(7), 37493758. https://doi.org/10.1021/acs.jpcc.5b10181CrossRefGoogle Scholar
Wang, J., Savoye, S., Ferrage, E., Hubert, F., Lefevre, S., Radwan, J., Robinet, J., Tertre, E., & Gouze, P. (2022). Water and ion diffusion in partially water saturated compacted kaolinite: Role played by vapor-phase diffusion in water mobility. The Journal of Contaminant Hydrology, 248, 103989. https://doi.org/10.1016/j.jconhyd.2022.103989CrossRefGoogle ScholarPubMed
Washburn, E. (1921). The dynamics of capillary flow. Physical Review, 17, 273. https://doi.org/10.1103/PhysRev.17.273CrossRefGoogle Scholar
Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28(8), 988994. https://doi.org/10.1021/ie50320a024CrossRefGoogle Scholar
Wick, C., & Cummings, O. (2011). Understanding the factors that contribute to ion interfacial behavior. Chemical Physics Letters, 513, 161166. https://doi.org/10.1016/j.cplett.2011.06.052CrossRefGoogle Scholar
Wilding, N. B., Evans, R., & Turci, F. (2024). What is the best simulation approach for measuring local density fluctuations near solvo-/hydrophobes? The Journal of Chemical Physics, 160(16), 164103. https://doi.org/10.1063/5.0203088CrossRefGoogle Scholar
Willard, A. P., & Chandler, D. (2014). The molecular structure of the interface between water and a hydrophobic substrate is liquid-vapor like. The Journal of Chemical Physics, 141(18), 18C519. https://doi.org/10.1063/1.4897249CrossRefGoogle Scholar
Yang, X., An, C., Feng, Q., Boufadel, M., & Ji, W. (2022). Aggregation of microplastics and clay particles in the nearshore environment: Characteristics, influencing factors, and implications. Water Research, 224, 119077. https://doi.org/10.1016/j.watres.2022.119077CrossRefGoogle ScholarPubMed
Yang, Y., Churakov, S., Patel, R., Prasianakis, N., Deissmann, G., Bosbach, D., & Poonoosamy, J. (2024). Pore-scale modeling of water and ion diffusion in partially saturated clays. Water Resources Research, 60(1). https://doi.org/10.1029/2023WR035595CrossRefGoogle Scholar
Ye, X., Cheng, Z., Wu, M., Hao, Y., Lu, G., Hu, X. B., Mo, C., Li, Q., Wu, J., & Wu, J. (2022). Effects of clay minerals on the transport of polystyrene nanoplastic in groundwater. Water Research, 223, 118978. https://doi.org/10.1016/j.watres.2022.118978CrossRefGoogle ScholarPubMed
Yin, X., & Miller, J. (2012). Wettability of kaolinite basal planes based on surface force measurements using atomic force microscopy. Mining, Metallurgy & Exploration, 29, 1319.10.1007/BF03402328CrossRefGoogle Scholar
Young, T. (1805). An essay on the cohesion of fluids. Philosophical Transactions, 95, 65. https://doi.org/10.1098/rstl.1805.0005Google Scholar
Yuan, D., Xie, L., Shi, X., Yi, L., Zhang, G., Zhang, H., Liu, Q., & Zeng, H. (2018). Selective flotation separation of molybdenite and talc by humic substances. Minerals Engineering, 117, 3441. https://doi.org/10.1016/j.mineng.2017.12.005CrossRefGoogle Scholar
Yuet, P. K., & Blankschtein, D. (2010). Molecular dynamics simulation study of water surfaces: Comparison of flexible water models. The Journal of Physical Chemistry B, 114(43), 1378613795. https://doi.org/10.1021/jp1067022CrossRefGoogle ScholarPubMed
Zhang, Y., Liu, X., van Duin, A. C. T., Lu, X., & Meijer, E. (2024). Development and validation of a general-purpose reaxff reactive force field for earth material modeling. The Journal of Chemical Physics, 160(9), 094103. https://doi.org/10.1063/5.0194486CrossRefGoogle ScholarPubMed
Supplementary material: File

Guérin et al. supplementary material

Guérin et al. supplementary material
Download Guérin et al. supplementary material(File)
File 1.3 MB