Published online by Cambridge University Press: 01 January 2024
A study was made of the changes in viscosity of Wyoming bentonite suspensions with variations in cation ionization, base saturation, clay concentration, sodium chloride concentration and type of exchangeable cation. There is little change in the viscosity with decreasing cation ionization until a certain threshold value is reached. Below this value the viscosity increases rapidly, indicating that the repulsive potential barrier has been reduced to the order of the kinetic energy of the particles. Unfortunately, a quantitative estimate of the ionization was not possible at this value because of the high salt content of the system.
Exchangeable aluminum was found to act as a strong bonding agent between clay particles in the pH range 4.50–5.50. This was explained on the basis of the formation of multivalent, aluminum-hydroxyl complex ions.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.