Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T14:49:43.616Z Has data issue: false hasContentIssue false

Use of Tmax as a thermal maturity indicator in orogenic successions and comparison with clay mineral evolution

Published online by Cambridge University Press:  09 July 2018

F. Dellisanti*
Affiliation:
Dipartimento di Scienze della Terra e Geo-Ambientali, Università di Bologna P. Porta S. Donato, 1, I-40126, Bologna, Italy
G. A. Pini
Affiliation:
Dipartimento di Scienze della Terra e Geo-Ambientali, Università di Bologna P. Porta S. Donato, 1, I-40126, Bologna, Italy
F. Baudin
Affiliation:
UPMC – Université de Paris 06, CNRS-UMR 7193, ISTEP, Equipe Evolution et Modélisation des Bassins Sédimentaires, case 117, 4pl ace Jussieu, 75252 Paris CEDEX 05, France

Abstract

The relationship between three parameters, the Tmax given by Rock-Eval pyrolysis, the illite content in illite-smectite mixed layers (I-S) and the Ku¨bler Index (KI) has been investigated in the Cretaceous–Neogene, sedimentary syn-orogenic successions in the Northern Apennines (Italy). A strong relationship was found between maturity stages of kerogen, illite content in I-S and KI. The oil formation zone for continental organic matter (Type III), delimited by Tmax between 434 and 465ºC, corresponded to rocks with short-range ordering R1, I-S with illite content between 60 and 85% and KI values in the range 0.85–0.65 (ºΔ2θ). Over-mature rocks were characterized by Tmax >465ºC, a long-range ordered I-S with an illite content >85% and KI in the range 0.65–0.45 (ºΔ2θ). The relationship permits use of both mineralogical parameters and Tmax to estimate palaeotemperatures in sedimentary successions and it can be exploited in hydrocarbon research to evaluate the petroleum potential.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkai, P., Sassi, F.P. & Desmons, J. (2002) Very low to low-grade metamorphic rocks. A proposal on behalf of the IUGS Subcommision on the Systematic of Metamorphic Rocks. Web version of 31.10.2002.Google Scholar
Barchi, M., Landuzzi, A., Minelli, G. & Pialli, G. (2001) Outer Northern Apennines. Pp. 215254 in: Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins. (Vai, G.B. & Martin, I.P., editors). Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Barker, C. (1974) Pyrolysis techniques for source-rock evaluation. American Association of Petroleum Geologist Bulletin, 58, 23492361.Google Scholar
Bertotti, G., Capozzi, R. & Picotti, V. (1997) Extension control Quaternary tectonics, geomorphology and sedimentation of the N-Apennines foothills and adjacent Po Plain (Italy). Tectonophysics, 282, 291301.Google Scholar
Boccaletti, M., Calamita, F., Deiana, G., Gelati, R., Massari, F., Moratti, G. & Ricci Lucchi, F. (1990) Migrating foredeep-thrust belt system in the Northern Apennines and Southern Alps. P alaeogeography, Palaeoclimatology, Palaeoecology, 77, 314.CrossRefGoogle Scholar
Boccaletti, M., Bonini, M., Corti, G., Gasperini, P., Martelli, L., Piccardi, L., Tanini, C. & Vannucci, G. (2004) The Seismotectonic Map of the Emilia-Romagna Region. Regione Emilia Romagna & SELCA, Firenze, Italy.Google Scholar
Borgia, A., Greco, G., Brondi, F., Badalì, M., Merle, O., Pasquarè, G., Martelli, L. & Di Nardo, T. (2006) Shale diapirism in the Quaternary tectonic evolution of the Northern Apennine, Bologna, Italy. Journal of Geophysical Research, 111, B08406, DOI: 10.1029/2004JB003375.Google Scholar
Bortolotti, V., Principi, G. & Treves, B. (2001) Ophiolites, ligurides and the tectonic evolution from spreading to convergence of a Mesozoic western Tethys segment. Pp. 151164 in: Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins. (Vai, G.B. & Martin, I.P., editors). Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Botti, F., Aldega, L. & Corrado, S. (2004) Sedimentary and tectonic burial evolution of the Northern Apennines in the Modena—Bologna area: constraints from combined stratigraphic, structural, organic matter and clay mineral data of Neogene thrust-top basins. Geodinamica Acta, 17, 185203.Google Scholar
Burnham, A.K. & Sweeney, J.J. (1989) A chemical kinetic model of vitrinite maturation and reflectance. Geochimica et Cosmochimica Acta, 53, 26492657.Google Scholar
Burtner, R.L. & Warner, M.A. (1986) Relationship between illite/smeetite diagenesis and hydrocarbon generation in Lower Cretaceous Mowry and Skull Creek Shales of the Northern Rocky Mountain area. Clays and Clay Minerals, 34, 390402.Google Scholar
Camerlenghi, A. & Pini, G.A. (2009) Mud volcanoes, olistostromes and Argille scagliose in the Mediterranean region. Sedimentology, 56, 319365.Google Scholar
Capozzi, R. & Picotti, V. (2002) Fluid migration and origin of a mud volcano in the Northern Apennines (Italy): the role of deeply rooted normal faults. Terra Nova, 14, 363370.Google Scholar
Carmignani, L., Decandia, F.A., Disperati, L., Fantozzi, P.L., Kligfield, R., Lazzarotto, A., Lotta, D. & Meccheri, M. (2001) Inner Northern Apennines. Pp. 197214 in: Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins. (Vai, G.B. & Martin, I.P., editors). Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Carmignani, L., Conti, P., Cornamusini, G. & Meccheri, M. (2004) The internal Northern Apennines, the northern Tyrrhenian Sea and the Sardinia-Corsica block. Pp. 5977 in: Geology of Italy (Crescenti, U., D'Offizi, S., Merlino, S. & Sacchi, L., editors). Special Volume of the Italian Geological Society for the IGC 32 Florence-2004, Societa Geologica Italiana, Roma, Italy.Google Scholar
Castellarin, A. (2001) Alps-Apennines and Po Plain-Frontal Apennines relationships. Pp. 177196 in: Anatomy of an Orogen (Vai, G.B. & Martini, I.P., editors) Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Castellarin, A. & Pini, G.A. (1989) L'arco del Sillaro: la messa in posto delle Argille Scagliose al margine appenninico padano (Appennino bolognese). Memorie delta Società Geologica Italiana, 39, 127142.Google Scholar
Castellarin, A., Cantelli, L., Fesce, A.M., Mercier, J.L., Picotti, V., Pini, G.A., Prosser, G. & Selli, L. (1992) Alpine compressional tectonics in the Southern Alps: Relationships with the N-Apennines. Annales Tectonicae, 4, 6294.Google Scholar
Cerrina Feroni, A., Ottria, G., Martinelli, P., Martelli, L. & Catanzariti, R. (2002) Structural-geological map of the Emilia-Romagna Apennines 1:250000. Emilia-Romagna Geological Survey, S.EL.CA., Firenze, Italy.Google Scholar
Cerrina Feroni, A., Ottria, G. & Ellero, A. (2004) The Northern Apennines, Italy: geological structure and transpressive evolution. Pp. 1532 in: Geology of Italy (Crescenti, U., D'Offizi, S., Merlino, S. & Sacchi, L., editors). Special Volume of the Italian Geological Society for the IGC 32 Florence-2004, Societa Geologica Italiana, Roma, Italy.Google Scholar
Channell, J.E.T., D'Argenio, B. & Horvath, F. (1979) Adria, the African promontory, in Mesozoic Mediterranean paleogeography. Earth Science Reviews, 15, 213288.Google Scholar
Daniele, G. & Plesi, G. (2000) The Ligurian Helminthoid Flysch units of the Emilian Apennines: stratigraphic and petrographic features, palaeogeographic restoration and structural evolution. Geodinamica Acta, 13, 313333.Google Scholar
Dellisanti, F. & Pini, G.A. (2007) The eo-mesoalpine accretionary stage of the Northern Apennines: insights from the estimated paleotemperatures. Epitome, 2, 99-100. Proceedings of Geoltalia Conference, Rimini, Italy.Google Scholar
Dellisanti, F., Pini, G., Tateo, F. & Baudin, F. (2008) The role of tectonic shear strain on the illitization mechanism of mixed-layers illite-smectite. A case study from a fault zone in the Northern Apennines, Italy. International Journal of Earth Sciences, 97, 601616.Google Scholar
Dercourt, J., Zonenshain, L.P., Ricou, L.E., Kazmin, V.G., Le Pichon, X., Knipper, A.L., Grandjacquet, C., Sbortshikov, I.M., Geyssant, J., Lepvrier, C., Pechersky, D.H., Boulin, J., Sibuet, J.C., Savostin, L.A., Sorokhtin, O., Westphal, M., Bazhenov, M.L., Lauer, J.P. & Biju-Duval, B. (1986) Geological evolution of the Tethys belt from the Atlantic to the Pamir since the Lias. Tectonophysics, 123, 241315.Google Scholar
Doglioni, C., Guegen, E., Harabaglia, P. & Mongelli, F. (1999) On the origin of west-directed subduction zones and applications to western Mediterranean. Pp. 541561 in. Mediterranean Basins (Durand, B., Jolivet, L., Horva, T.F. & Seranne, M., editors) Geological Society, London, Special Publication, 156. Google Scholar
Ducci, M., Leoni, L., Marroni, M. & Tamponi, M. (1995) Determinazione del grado metamorfieo delle Argille a Palombini dell'Alta Vai Lavagna (Unita Gottero, Appennino Settentrionale. Atti Societa Toscana Scienze Naturali, Memorie, Serie A, 102, 3945.Google Scholar
Ellero, A., Leoni, L., Marroni, M. & Sartori, F. (2001) Internal Liguride units from central Liguria, Italy; new constraints to the tectonic setting from white mica and chlorite studies. Schweizer Mineralogische und Petrographische Mitteilungen, 81, 3953.Google Scholar
Elter, P. (1975) L'ensemble ligure. Bulletin Société Géologique France, 17, 984997.Google Scholar
Espitalié, J. (1986) Use of Tmax as a maturation index for different types of organic matter. Comparison with vitrinite reflectance. Pp. 475496 in: Thermal Modelling in Sedimentary Basins (Burrus, J., editor). Technip, Paris.Google Scholar
Espitalié, J., La Porte, J.L., Madec, M., Marquis, F., Le Plat, P., Paulet, J. & Boutefeu, A. (1977) Rapid method for source rocks characterization and for determination of petroleum potential and degree of evolution. Oil and Gas Science and Technology — Revue de I'Institut Français du Pètrole, 32, 2342.Google Scholar
Espitalié, J., Marquis, F. & Barsony, I. (1984) Geochemical logging. Pp. 216— 304 in: Analytical Pyrolysis (Voorhess, K.J., editor). Butterworths, Boston.Google Scholar
Espitalié, J., Deroo, G. & Marquis, F. (1985a) Rock-Eval pyrolysis and its applications (part one). Oil & Gas Science and Technology — Revue de I'Institut Franqais du Petrole, 40, 563579.Google Scholar
Espitalié, J., Deroo, G. & Marquis, F. (1985b) Rock-Eval pyrolysis and its applications (part two). Oil & Gas Science and Technology — Revue de I'Institut Franqais du Petrole, 40, 755784.Google Scholar
Festa, A., Pini, G.A., Dilek, Y., Codegone, G., Vezzani, L., Ghisetti, F., Lucente, C.C. & Ogata, K. (2010) Peri-Adriatic melanges and their evolution in the Tethyan realm. International Geology Review, 52, 369403.Google Scholar
Frey, M. (1987) Low Temperature Metamorphism. Chapman and Hall, New York, 351 pp.Google Scholar
Frey, M. & Robinson, D. (1999) Low-Grade Metamorphism. Blackwell Science, Oxford, UK, 313 pp.Google Scholar
Guggenheim, S., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Eberl, D.D., Formoso, M.L.L., Galan, E., Merriman, R.J., Peacor, D.R., Stanjek, H. & Watanabe, T. (2002) Report of the Association Internationale pour PEtude des Argiles (AFPEA) Nomenclature Committee for 2001: Order, disorder and crystallinity in phyllosilicates and the use of the ‘Crystallinity Index'. Clay Minerals, 37, 389393.Google Scholar
Hoffman, J. & Hower, J. (1979) Clay mineral assemblages as low grade metamorphic geothermometers: application to the thrust faulted disturbed belt of Montana. Pp. 5579 in: Aspects of Diagenesis (Scholle, P.A. & Schluger, P.S., editors). Special Publication, 26, SEPM — Society of Economic Paleontologists and Mineralogists, Tulsa, Oklahoma, USA.Google Scholar
Horsfield, B. & Rüllkotter, J. (1994) Diagenesis, catagenesis and metagenesis of organic matter. Pp. 189199 in: The Petroleum System. From Source to Trap (Magoon, L.B. & Dow, D.G., editors). American Association of Petroleum Geologists Memoir, 60.Google Scholar
Hunt, J.M. (1995) Petroleum Geochemistry and Geology. Freeman, New York, 743 pp.Google Scholar
Jaboyedoff, M. & Thelin, P. (1996) New data on lowgrade metamorphism in the Brianconnais domain of the Prealps, Western Switzerland. European Journal of Mineralogy, 8, 577592.Google Scholar
Kisch, H.J. (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks. Pp. 289493, 513-541 in: Diagenesis in Sediments and Sedimentary Rocks, 2 (Larsen, G. & Chilingar, G.V., editors). Elsevier, Amsterdam, The Netherlands.Google Scholar
Kisch, H.J. (1991) Illite crystallinity — recommendations on sample preparation, X-ray-diffraction settings, and interlaboratory samples. Journal of Metamorphic Geology, 9, 665670.Google Scholar
Krumm, S. (1996) WINFIT 1.0 - a computer program for X-ray diffraction line profile analysis. Ada Universitatis Carolinae Geologica, 38, 253261.Google Scholar
Kübler, B. (1967) La cristallinité de Fillite et les zones tout à fait supérieures du métamorphisme. Pp. 105121 in: Etages Tectoniques, Colloque de Neuchatel 1966. Université Neuchatel, Switzerland.Google Scholar
Laubsher, H. P., Biella, G. C., Cassinis, R., Gelati, R., Lozej, A., Scarascia, S. & Tabacco, I. (1992) The collisional knot in Liguria. International Journal of Earth Sciences - Geologische Rundschau, 81, 275289.Google Scholar
Leoni, L. (2001) New standardized illite crystallinity data from low- to very-low-grade metamorphic rocks (Northern Apennines, Italy). European Journal of Mineralogy, 13, 11091118 Google Scholar
Leoni, L., Marroni, M., Sartori, F. & Tamponi, M. (1996) Metamorphic grade in metapelites of the internal liguride units (Northern Apennines, Italy). European Journal of Mineralogy, 8, 3550.Google Scholar
Leoni, L., Sartori, F. & Tamponi, M. (1998) Composition variation in K-white micas and chlorites coexisting in Al-saturated metapelites under late diagenetic to low-grade metamorphic conditions (Internal Liguride Units, Northern Apennines, Italy). European Journal of Mineralogy, 10, 13211339.Google Scholar
Levi, N., Ellero, A., Ottria, G., & Pandolfi, L. (2006) Polyorogenic deformation history recognized at very shallow structural levels: the case of the Antola Unit (Northern Apennine, Italy). Journal of Structural Geology, 28, 16941709.Google Scholar
Lezzerini, M., Sartori, F. & Tamponi, M. (1995) Effect of amount of material used on sedimentation slides in the control of illite crystallinity measurements. European Journal of Mineralogy, 7, 819823.Google Scholar
Lucente, C.C. & Pini, G.A. (2008) Basin-wide mass-wasting complexes as markers of the Oligo-Miocene foredeep-accretionary wedge evolution in the Northern Apennines, Italy. Basin Research, 20, 4971.Google Scholar
Mantovani, E., Babbucci, D., Tamburelli, C. & Viti, M. (2008) A review of the driving mechanism of the Tyrrhenian—Apennines system: Implications for the present seismotectonic setting in the Central-Northern Apennines. Tectonophysics, 476, 2240.Google Scholar
Marroni, M. (1994) Deformation path of the Internal Ligurian Units (Northern Apennines, Italy): record of shallow-level underplating in the Alpine accretionary wedge. Memorie della Società Geologica Italiana, 48, 179194.Google Scholar
Marroni, M. & Pandolfi, L. (2001) Debris flow and slide deposit at the top of the Internal Liguride ophiolitic sequence, Northern Apennines, Italy: A record of frontal tectonic erosion in a fossil accretionary wedge. The Island Arc, 10, 921.Google Scholar
Marroni, M. & Treves, B. (1998) Hidden terranes in the Northern Apennines, Italy: A record of Late Cretaceous Oligocene transpressional tectonics. Journal of Geology, 106, 149162.Google Scholar
Marroni, M., Molli, G., Pandolfi, L. & Taini, A. (1999) Foliated cataclasites at the base of the Antola unit (Italy): structural features and geological implications. Comptes Rendus de VAcademie de le Sciences de Paris, 329, 135141.Google Scholar
Marroni, M., Molli, G., Ottria, G. & Pandolfi, L. (2001) Tectono-sedimentary evolution of the External Liguride units (Northern Apennines, Italy): insights in the pre-collisional history of a fossil ocean-continent transition zone. Geodinamica Ada, 14, 307320.Google Scholar
Merriman, R.J. & Frey, M. (1999) Patterns of very lowgrade metamorphism in metapelitic rocks. Pp. 61107 in: Low-grade Metamorphism (Frey, M. & Robinson, D., editors). Blackwell, Oxford, UK.Google Scholar
Molli, G. (2008) Northern Apennine-Corsica orogenic system: an updated overview. Pp. 413442 in. Tectonic Aspects of the Alpine-Dinaride-Carpathian System (Siegesmund, S., Fiigenschuh, B. & Froitzheim, N., editors). Geological Society, London, Special Publication, 298. Google Scholar
Moore, D.M. & Reynolds, R.C. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, 327 pp.Google Scholar
Ori, G.G. & Friend, P.F. (1984) Sedimentary basins formed and carried piggyback on active thrust sheets. Geology, 12, 475478.Google Scholar
Pini, G.A. (1999) Tectonosomes and olistostromes in the Argille scagliose of the Northern Apennines, Italy. Geological Society America, Special Paper, 335, 170.Google Scholar
Pini, G.A., Lucente, C.C., Cowan, D.S., De Libero, C.M., Dellisanti, F., Landuzzi, A., Negri, A., Tateo, F., Del Castello, M., Morrone, M. & Cantelli, L. (2004) The role of olistostromes and argille scagliose in the structural evolution of the northern Apennine. Pp. 140 in: Field Trip Guidebooks, 32nd IGC Florence 20-28 August 2004 (Guerrieri, L., Rischia, I. & Serva, L., editors). Memorie Descrittive della Carta Geologica d'Italia, 63, B13.Google Scholar
Reutter, K.J., Teichmuller, M., Teichmuller, R. & Zanzucchi, G. (1980) Le ricerche sulla carbonificazione dei frustoli vegetali nelle rocce clastiche, come contributo ai problemi di paleogeotermia e tettonica nell'Appennino settentrionale. Memorie della Societa Geologica Italiana, 21, 111126.Google Scholar
Reutter, K.J., Teichmueller, M., Teichmueller, R. & Zanzucchi, G. (1983) The coalification pattern in the Northern Apennines and palaeogeothermic and tectonic significance. Geologishe Rundschau, 72, 861893.CrossRefGoogle Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249303 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G.W. & Brown, G., editors) Monograph 5, Mineralogical Society, London.Google Scholar
Reynolds, R.C. (1985) NEWMOD, a Computer Program for the Calculation of One-Dimensional Diffraction patterns of Mixed-Layer Clays. Google Scholar
Ricci Lucchi, F. (1986) The Oligocene to Recent foreland basins of the northern Apennines. Special Publication, International Association of Sedimentologists, 8, 105139.Google Scholar
Scotchman, I.C. (1987) Clay diagenesis in Kimmeridigian clay formation: onshore UK and its relation to organic maturation. Mineralogical Magazine, 51, 535551.Google Scholar
Stach, E., Mackowsky, M.T., Teichmüller, M., Taylor, G.H., Chandra, D. & Teichmüller, R. (1982) Pp. 535 in: Stach's text book of coal petrology. 3rd edition (Borntraeger, G., editor). Gerbruder Barntraeger, Berlin, Germany.Google Scholar
Stern, W.B., Mullis, J., Rahn, M. & Frey, M. (1991) Deconvolution of the first ‘illite’ basal reflection. Schw eizeris che Miner alogis che Und Petrographische Mitteilungen, 71, 453462.Google Scholar
Teichmüller, M. (1958) Métamorphisme du charbon et prospection du pétrole. Revue Industrie Minerale, 1-15.Google Scholar
Teichmüller, M. & Durand, B. (1983) Fluorescence microscopical rank studies on liptinites and vitrinites in peat and coals, and comparison with results of the Rock-Eval pyrolysis. International Journal of Coal Geology, 2, 197230.Google Scholar
Tissot, B.P. & Welte, D.H. (1984) Petroleum Formation and Occurrence. Springer-Verlag, Berlin, Germany, 538 pp.Google Scholar
Vai, G.B. & Castellarin, A. (1993) Correlazione sinottica delle unita stratigrafiche nell'Appennino Settentrionale. Studi Geologici Camerti, Volume Speciale 1992, 2A, 171-185.Google Scholar
Vannucchi, P., Remitti, F. & Bettelli, G. (2008) Geological record of fluid flow and seismogenesis along an erosive subducting plate boundary. Nature, 451, 699703.Google Scholar
Velde, B. & Espitalié, J. (1989) Comparison of kerogen maturation and illite/smectite composition in diagenesis. Journal of Petroleum Geology, 12, 103110.Google Scholar
Ventura, B., Pini, G.A. & Zuffa, G.G. (2001) Thermal history and exhumation of the Northern Apennines (Italy): evidence from combined apatite fission track and vitrinite reflectance data from foreland basin sediments. Basin Research, 13, 435448.Google Scholar
Vescovi, P., Fornaciari, E., Rio, D. & Valloni, R. (1999) The Basal Complex Stratigraphy of the Helmintoid Monte Cassio Flysch: a key to the Eoalpine tectonics of the Northern Appennines. Rivista Italiana di Paleontologia e Stratigrafia, 105, 101128.Google Scholar
Warr, L.N. & Rice, A.H.N. (1994) Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data. Journal of Metamorphic Geology, 12, 141152.Google Scholar
Zattin, M., Picotti, V. & Zuffa, G.G. (2002) Fission-track reconstruction of the front of the Northern Apennine thrust wedge and overlying Ligurian unit. American Journal of Science, 302, 346379. Google Scholar