Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T03:42:58.907Z Has data issue: false hasContentIssue false

Study of the catalytic activity of Al-Fe pillared clays in the Baeyer–Villiger oxidation

Published online by Cambridge University Press:  09 July 2018

L. S. Belaroui*
Affiliation:
Département de Pharmacie, Faculté de Médecine, Université d'Oran, BP 1510 Oran, El M'Naouer, Algeria Laboratoire de Chimie des Matériaux (LCM), Faculté des Sciences, Université d'Oran, BP 1524Oran, El M'Naouer, Algeria
A. Bengueddach
Affiliation:
Laboratoire de Chimie des Matériaux (LCM), Faculté des Sciences, Université d'Oran, BP 1524Oran, El M'Naouer, Algeria

Abstract

Three types of AlFePILCs pillared clays have been prepared from Algerian clay precursors. They have been characterized and tested in the Baeyer–Villiger oxidation of cyclohexanone to caprolactone using benzaldehyde and oxygen as oxidant at room temperature. The structural and textural properties of the catalyst have been determined by X-ray diffraction, nitrogen adsorption-desorption isotherms and Mössbauer spectroscopy.

The different activities of the clays have been related to their Fe contents and accessible surface areas. The induction period observed before the reaction started has been attributed to the dissolution of a portion of the Fe3+ cations, mediated by either the perbenzoic acid intermediate or the benzoic acid co-product. The reaction was indeed catalysed by a few ppm of dissolved iron cations and the catalysis of the Baeyer–Villiger oxidation reaction should mechanistically be considered as homogeneous.

Type
Research Papers
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Presented at the Euroclay 2011 Conference at Antalya, Turkey

References

Ben Achma, R., Ghorbel, A., Dafinov, A. & Medina, F. (2008) Copper-supported pillared clay catalysts for the wet hydrogen peroxide catalytic oxidation of model pollutant tyrosol. Applied Catalysis A: General, 349, 20–28.Google Scholar
Barrault, J., Bouchoule, C., Echachoui, K., Frini-Srasra, N., Trabelsi, M. & Bergaya, F. (1998) Catalytic wet peroxide oxidation (CWPO) of phenol over mixed (Al-Cu)-pillared clays. Applied Catalysis B: Environmental, 15, 269–274.Google Scholar
Barrault, J., Tatibouet, J. M. & Papayannakos, N. (2000) Catalytic wet peroxide oxidation of phenol over pillared clays containing iron or copper species. Surface Chemistry and Catalysis, 3, 777–783.Google Scholar
Barrett, E.P., Joyner, L. G. & Halenda, P. P. (1951) The determination of pore volume and area distributions in porous substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73, 373–380.Google Scholar
Belaroui, L.S. (2008) Préparation et caractérisation des argiles à piliers mixtes Al-Fe et leurs applications comme catalyseurs dans la réaction d’oxydation de Baeyer–Villiger et extension à d’autres catalyseurs à base de fer. PhD thesis, University of Claude Bernard, Lyon 1, France. 192 pp.Google Scholar
Belaroui, L.S., Millet, J.M.M. & Bengueddach, A. (2004) Characterization of lalithe, a new bentonite-type Algerian clay, for intercalation and catalysts preparation. Catalysis Today, 89, 279–286.CrossRefGoogle Scholar
Bernini, R., Mincione, E., Cortese, M., Aliotta, G., Oliva, A. & Saladino, R. (2001) A new and efficient Baeyer–Villiger rearrangement of flavanone derivatives by the methyltrioxorhenium/H2O2 catalytic system. Tetrahedron Letters, 42, 5401–5404.CrossRefGoogle Scholar
Bolm, C., Beckmann, O. & Palazzi, C. (2001) Chiral aluminum complexes as catalysts in asymmetric Baeyer–Villiger reactions of cyclobutanones. Canadian Journal of Chemistry, 79, 1593–1597.Google Scholar
Boronat, M., Concepcion, P., Corma, A., Renz, M. & Valencia, S. (2005) Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. Journal of Catalysis, 234, 111–118.Google Scholar
Carriazo, J.G., Centeno, M.A., Odriozola, J.A., Moreno, S. & Molina, R. (2007) Effect of Fe and Ce on Alpillared bentonite and their performance in catalytic oxidation reactions. Applied Catalysis A: General, 317, 120–128.Google Scholar
Corma, A., Nemeth, L. T., Renz, M. & Valencia, S. (2001) Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations. Nature, 412, 423–425.CrossRefGoogle ScholarPubMed
Corma, A., Iborra, S., Mifsud, M., Renz, M. & Susarte, M. (2004) A new environmentally benign catalytic process for the asymmetric synthesis of lactones: Synthesis of the flavouring d-decalactone molecule. Advanced Synthesis & Catalysis, 346, 257–262.Google Scholar
Del Todesco Frisone, M., Giovanetti, R., Pinna, F. & Strukul, G. (1991) Lactonization of cyclic ketones with hydrogen peroxide catalyzed by platinum(II) complexes. Studies in Surface Science and Catalysis, 66, 405–410.Google Scholar
Frini, N., Crespin, M., Trabelsi, M., Messad, D., Van Damme, H. & Bergaya, F. (1997) Preliminary results on the properties of pillared clays by mixed Al-Cu solutions. Applied Clay Science, 12, 281–292.Google Scholar
Hashemi, M. M. & Beni, Y. A. (2000) Nickel (II) and iron (II)/Dowex 50W: an effective catalyst for the Baeyer-Villiger oxidation of ketones using molecular oxygen and benzaldehyde. Journal of Chemical Research, 2000, 196–197.CrossRefGoogle Scholar
Kaneda, K., Ueno, S. & Imanaka, T. (1994) Heterogeneous Baeyer–Villiger oxidation of ketones using an oxidant consisting of molecular oxygen and aldehydes in the presence of hydrotalcite catalysts. Journal of the Chemical Society, Chemical Communications, Issue 7, 797–798.Google Scholar
Kaneda, K., Ueno, S. & Imanaka, T. (1995) Catalysis of transition metal-functionalized hydrotalcites for the Baeyer-Villiger oxidation of ketones in the presence of molecular oxygen and benzaldehyde. Journal of Molecular Catalysis A, Chemical, 102, Issue 3, 135–138.CrossRefGoogle Scholar
Kaneda, K., Yamaguchi, K., Mori, K., Mizugaki, T. & Ebitani, K (2000) Catalyst design of hydrotalcite compounds for efficient oxidations, Catalysis Surveys from Japan, 4, 31–38.CrossRefGoogle Scholar
Kawabata, T., Fujisaki, N., Shishido, T., Nomura, K., Sano, T. & Takehira, K. (2006) Improved Fe/Mg-Al hydrotalcite catalyst for Baeyer-Villiger oxidation of ketones with molecular oxygen and benzaldehyde. Journal of Molecular Catalysis A, Chemical, 253, 279–289.Google Scholar
Millet, J.M.M., Virely, C., Forissier, M., Bussière, P., Vedrine J.C. (1989) Mössbauer spectroscopic study of iron phosphate catalysts used in selective oxidation. Hyperfines Interactions, 46, 619–628.Google Scholar
Miyake, Y., Nishibayashi, Y. & Uemura, S. (2002) Asymmetric Baeyer–Villiger oxidation of cyclic ketones using chiral organoselenium catalysts. Bulletin of the Chemical Society of Japan, 75, 2233–2237.Google Scholar
Murahashi, Shun-Ichi, Oda, Y. & Naota, T. (1992) Fe2O3- catalyzed Baeyer-Villiger oxidation of ketones with molecular oxygen in the presence of aldehydes. Tetrahedron Letters, 33, 7557–7560.Google Scholar
Najjar, W., Azabou, S., Sayadi, S. & Ghorbel, A. (2007) Catalytic wet peroxide photo-oxidation of phenolic olive oil mill wastewater contaminants. Part I: reactivity of tyrosol over (Al-Fe) PILC. Applied Catalysis B: Environmental, 74, 11–18.Google Scholar
Renz, M. & Meunier, B. (1999) 100 years of Baeyer-Villiger oxidations. European Journal of Organic Chemistry, 4, 737–750.Google Scholar
Renz, M., Blasco, T., Corma, A., Fornés, V., Jensen, R., Nemeth, L. (2002) Selective and shape-selective Baeyer–Villiger oxidations of aromatic aldehydes and cyclic ketones with Sn-beta zeolites and H2O2 . Chemistry – A European Journal, 8, 4708–4717.Google Scholar
Strukul, G. (1998) Transition metal catalysis in the Baeyer–Villiger oxidation of ketones. Angewandte Chemie, International Edition, 37, 1198–1209.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Strukul, G. (2002) Lewis acid behavior of cationic complexes of palladium(II) and platinum(II): Some examples of catalytic applications. Topics in Catalysis, 19, 33–42.CrossRefGoogle Scholar
Strukul, G., Varagnolo, A. & Pinna, F. (1997) New (old) hydroxo complexes of platinum(II) as catalysts for the Baeyer-Villiger oxidation of ketones with hydrogen peroxide. Journal Molecular Catalysis A: Chemical, 117, 413–423.Google Scholar
Ten Brink, G.-J., Vis, J.-M., Arends, I.W.C.E. & Sheldon, R. A. (2001) Selenium-catalyzed oxidations with aqueous hydrogen peroxide. 2. Baeyer-Villiger reactions in homogeneous solution. Journal of Organic Chemistry, 66, 2429–2433.CrossRefGoogle ScholarPubMed
Tomul, F. & Balci, S. (2009) Characterization of Al, Crpillared clays and CO oxidation. Applied Clay Science, 43, 13–20.Google Scholar
Uchida, T. & Katsuki, T. (2001) Cationic Co(III)(salen)- catalyzed enantioselective Baeyer–Villiger oxidation of 3-arylcyclobutanones using hydrogen peroxide as a terminal oxidant. Tetrahedron Letters, 42, 6911–691.Google Scholar
Ueno, S., Ebitani, K., Ookubo, A. & Kaneda, K. (1997) The active sites in the heterogeneous Baeyer-Villiger oxidation of cyclopentanone by hydrotalcite catalysts. Applied Surface Science, 121-122, 366–371.Google Scholar
Watanabe, A., Uchida, T., Ito, K. & Katsuki, T. (2002) Highly enantioselective Baeyer–Villiger oxidation using Zr(salen) complex as catalyst. Tetrahedron Letters, 43, 4481–4485.Google Scholar
Yamaguchi, K., Mori, K., Mizugaki, T., Ebitani, K. & Kaneda, K. (2000) Epoxidation of alpha,beta-unsaturated ketones using hydrogen peroxide in the presence of basic hydrotalcite catalysts. Journal of Organic Chemistry, 65, 6897–6903.Google Scholar