Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T10:45:59.178Z Has data issue: false hasContentIssue false

Structural, mechanical and Raman spectroscopic characterization of the layered uranyl silicate mineral, uranophane-α, by density functional theory methods

Published online by Cambridge University Press:  10 August 2018

Francisco Colmenero*
Affiliation:
Instituto de Estructura de la Materia, CSIC, C/Serrano, 113, 28006 Madrid, Spain
Vicente Timón
Affiliation:
Instituto de Estructura de la Materia, CSIC, C/Serrano, 113, 28006 Madrid, Spain
Laura J. Bonales
Affiliation:
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT, Avda/Complutense, 40, 28040 Madrid, Spain
Joaquín Cobos
Affiliation:
Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT, Avda/Complutense, 40, 28040 Madrid, Spain

Abstract

The layered uranyl silicate clay-like mineral, uranophane-α, Ca(UO2)2(SiO3OH)2·5H2O, was studied by first-principles calculations based on the density functional theory method. The structure, observed in nature in a wide variety of compounds having the uranophane sheet anion topology, is confirmed here for the first time by means of rigorous theoretical solid-state calculations. The computed lattice parameters, bond lengths and bond angles were in very good agreement with the experimental ones, and the calculated X-ray powder trace accurately reproduced its experimental counterpart. The mechanical properties of uranophane-α, for which there are no experimental data for terms of comparison, were determined, and the satisfaction of the mechanical stability Born conditions of the structure was demonstrated by calculations of the elasticity tensor. The Raman spectrum was computed by the density functional perturbation theory and compared with the experimental spectrum. The vibrational properties of this mineral were well characterized, showing a good performance in all of the studied spectral range. Theoretical methods allowed assignment of the Raman bands to vibrations localized in different fragments within the crystal unit cell. Finally, the possibility of incorporation of strontium inside the uranophane structure was studied. The computed structure, X-ray powder trace and Raman spectrum of Sr-exchanged uranophane were very close to those of the ordinary Ca-uranophane.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper was originally presented during the session OM-05: ‘Computational modeling of clay minerals and related materials' during the International Clay Conference 2017.

Guest Associate Editor: A. Kalinichev

References

REFERENCES

Amme, M., Renker, B., Schmid, B., Feth, M.P., Bertagnolli, H. & Döbelin, W. (2002) Raman microspectrometric identification of corrosion products formed on UO2 nuclear fuel during leaching experiments. Journal of Nuclear Materials, 306, 202212.Google Scholar
Angel, R.J. (2001) Equations of state. Pp. 3560 in: High-Temperature and High-Pressure Crystal Chemistry (Hazen, R.M. & Downs, R.T., editors). Reviews in Mineralogy and Geochemistry, 41. Mineralogical Society of America, Chantilly, VA, USA.Google Scholar
Atencio, D., Carvalho, F.M.S. & Matioli, P.A. (2004) Coutinhoite, a new thorium uranyl silicate hydrate, from Urucum mine, Galiléia, Minas Gerais, Brazil. American Mineralogist, 89, 721724.Google Scholar
Berghout, A., Tunega, D. & Zaoui, A. (2010) Density functional theory (DFT) study of the hydration steps of Na+/Mg2+/Ca2+/Sr2+/Ba2+-exchanged montmorillonites. Clays and Clay Minerals, 58, 174187.Google Scholar
Birch, F. (1947) Finite elastic strain of cubic crystal. Physical Review, 71, 809824.Google Scholar
Bonales, L.J., Colmenero, F., Cobos, J. & Timón, V. (2016) Spectroscopic Raman characterization of rutherfordine: a combined DFT and experimental study. Physical Chemistry Chemical Physics, 18, 65756584.Google Scholar
Bonales, L.J., Menor-Salván, C. & Cobos, J. (2015) Study of the alteration products of a natural uraninite by Raman spectroscopy. Journal of Nuclear Materials, 462, 296303.Google Scholar
Bouhadda, Y., Djella, S., Bououdina, M., Fenineche, N. & Boudouma, Y. (2012) Structural and elastic properties of LiBH4 for hydrogen storage applications. Journal of Alloys and Compounds, 534, 2024.Google Scholar
Burns, P.C. (1998) The structure of boltwoodite and implications of solid solution toward sodium boltwoodite. The Canadian Mineralogist, 36, 10691075.Google Scholar
Burns, P.C. (1999a) The crystal chemistry of uranium. Pp. 2390 in: Uranium: Mineralogy, Geochemistry, and the Environment (Burns, P.C. & Finch, R., editors). Reviews in Mineralogy and Geochemistry, 38. Mineralogical Society of America, Chantilly, VA, USA.Google Scholar
Burns, P.C. (1999b) Cs boltwoodite obtained by ion exchange from single crystals: implications for radionuclide release in a nuclear repository. Journal of Nuclear Materials, 265, 218223.Google Scholar
Burns., P.C. (2001) A new uranyl silicate sheet in the structure of haiweeite and comparison to other uranyl silicates. The Canadian Mineralogist, 39, 11531160.Google Scholar
Burns, P.C. (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. The Canadian Mineralogist, 43, 18391894.Google Scholar
Burns, P.C. & Hill, F.C. (2000) A new uranyl sheet in K5[(UO2)10O8(OH)9](H2O): new insight into sheet anion-topologies. The Canadian Mineralogist, 38, 163173.Google Scholar
Burns, P.C. & Klingensmith, A.L. (2006) Uranium mineralogy and neptunium mobility. Elements, 2, 351356.Google Scholar
Burns, P.C. & Li, Y. (2002) The structures of becquerelite and Sr-exchanged becquerelite. American Mineralogist, 87, 550557.Google Scholar
Burns, P.C., Miller, M.L. & Ewing, R.C. (1996) U6+ minerals and inorganic phases: a comparison and hierarchy of crystal structures. The Canadian Mineralogist, 34, 845880.Google Scholar
Burns, P.C., Ewing, R.C. & Hawthorne, F.C. (1997a) The crystal chemistry of hexavalent uranium; polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. The Canadian Mineralogist, 35, 15511570.Google Scholar
Burns, P.C., Ewing, R.C. & Miller, M.L. (1997b) Incorporation mechanisms of actinide elements into the structures of U6+ phases formed during the oxidation of spent nuclear fuel. Journal of Nuclear Materials, 245, 19.Google Scholar
Burns, P.C., Deely, K.M. & Skanthakumar, S. (2004) Neptunium incorporation into uranyl compounds that form as alteration products of spent nuclear fuel: implications for geologic repository performance. Radiochimica Acta, 92, 151159.Google Scholar
Cejka, J. (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. Pp. 521622 in: Uranium: Mineralogy, Geochemistry, and the Environment (Burns, P.C. & Finch, R., editors). Reviews in Mineralogy and Geochemistry, 38. Mineralogical Society of America, Chantilly, VA, USA.Google Scholar
Clark, S.J., Segall, M.D., Pickard, C.J., Hasnip, P.J., Probert, M.I.J., Refson, K. & Payne, M.C. (2005) First principles methods using CASTEP. Zeitschrift für Kristallographie, 220, 567570.Google Scholar
Colmenero, F., Bonales, L.J., Cobos, J. & Timón, V. (2017a) Thermodynamic and mechanical properties of the rutherfordine mineral based on density functional theory. Journal of Physical Chemistry C, 121, 59946001.Google Scholar
Colmenero, F., Bonales, L.J., Cobos, J. & Timón, V. (2017b) Study of the thermal stability of studtite by in situ Raman spectroscopy and DFT calculations. Spectrochimica Acta A, 174, 245253.Google Scholar
Colmenero, F., Bonales, L.J., Cobos, J. & Timón, V. (2017c) Structural, mechanical and vibrational study of uranyl silicate mineral soddyite by DFT calculations. Journal of Solid State Chemistry, 253, 249257.Google Scholar
Colmenero, F., Bonales, L.J., Cobos, J. & Timón, V. (2017d) Density functional theory study of the structural, vibrational and thermodynamic properties of γ-UO3 polymorph. Journal of Physical Chemistry C, 121, 1450714516.Google Scholar
Colmenero, F., Fernández, A. M., Cobos, J. & Timón, V. (2018a) Thermodynamic properties of uranyl containing materials based on density functional theory. Journal of Physical Chemistry C, 122, 52545267.Google Scholar
Colmenero, F., Fernández, A. M., Cobos, J. & Timón, V. (2018b) Temperature dependent free energies of reaction of uranyl containing materials based on density functional theory. Journal of Physical Chemistry C, 122, 52685279.Google Scholar
Chen, X.-Q., Niu, H., Li, D. & Li, Y. (2011) Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics, 19, 12751281.Google Scholar
Demartin, F., Gramaccioli, C.M. & Pilati, T. (1992) The importance of accurate crystal structure determination of uranium minerals. II. Soddyite (UO2)2(SiO4)·2H2O. Acta Crystallographica C, 48, 14.Google Scholar
Douglas, M., Clark, S.B., Utsunomiya, S. & Ewing, R.C. (2002) Cesium and strontium incorporation into uranophane, Ca[(UO2)(SiO3OH)]2·5H2O. Journal of Nuclear Science and Technology, 3, 504507.Google Scholar
Douglas, M., Clark, S.B., Friese, J.I., Arey, B.W., Buck, E.C., Hanson, B.D., Utsunomiya, S. & Ewing, R.C. (2005) Microscale characterization of uranium(VI) silicate solids and associated neptunium(V). Radiochimica Acta, 93, 265272.Google Scholar
Downs, R.T., Bartelmehs, K.L., Gibbs, G.V. & Boisen, M.B. (1993) Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. American Mineralogist, 78, 11041107.Google Scholar
Downs, R.T. (2006) The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals, Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan, 2006. O03-13. Record RRUFF-050380 corresponds to a natural mineral sample from Grafton County, New Hampshire, USA. RRUFF database, URL http://rruff.info/uranophane.Google Scholar
Driscoll, R.J.P., Wolverson, D., Mitchels, J.M., Skelton, J.M., Parker, S.C., Molinari, M., Khan, I., Geeson, D. & Allen, G.C. (2014) A Raman spectroscopic study of uranyl minerals from Cornwall, UK. RSC Advances, 4, 5913759149.Google Scholar
Finch, R.J. & Ewing, R.C. (1992) The corrosion of uraninite under oxidizing conditions. Journal of Nuclear Materials, 190, 133156.Google Scholar
Forbes, T.Z. & Burns, P.C. (2006) Ba(NpO2)(PO4)(H2O), its relationship to the uranophane group, and implications for Np incorporation in uranyl minerals. American Mineralogist, 91, 10891093.Google Scholar
Frondel, C. (1956) Mineral composition of gummite. American Mineralogist, 41, 539568.Google Scholar
Frost, R.L., Cejka, J., Weier, M.L. & Martens, W.N. (2006a) Molecular structure of the uranyl silicates – a Raman spectroscopic study. Journal of Raman Spectroscopy, 37, 538551.Google Scholar
Frost, R.L., Cejka, J., Weier, M.L. & Martens, W.N. (2006b) Raman spectroscopy study of selected uranophanes. Journal of Molecular Structure, 788, 115125.Google Scholar
Ginderow, D. (1988) Structure de l'uranophane alpha, Ca(UO2)2(SiO3OH)2.5H2O. Acta Crystallographica, 44, 421424.Google Scholar
Grenthe, I., Drozdzynski, J., Fujino, T., Buck, E.C., Albrecht-Schmitt, T.E. & Wolf, S.F. (2006) Uranium. Pp. 253638, in: The Chemistry of the Actinide and Transactinide Elements, Vol. I (Morss, L.R., Edelstein, N.M. & Fuger, J., editors). Springer Science and Business Media, Berlin.Google Scholar
Grimme, S. (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal Computational Chemistry, 27, 17871799.Google Scholar
Hill, R. (1952) The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society of London, 65, 349354.Google Scholar
Huang, J., Wang, X. & Jacobson, A.J. (2003) Hydrothermal synthesis and structures of the new open-framework uranyl silicates Rb4(UO2)2(Si8O20) (USH-2Rb), Rb2(UO2)(Si2O6)·H2O (USH-4Rb) and A2(UO2)(Si2O6)·0.5H2O (USH-5A, A = Rb,Cs). Journal of Materials Chemistry, 13, 191196.Google Scholar
Jackson, J.M. & Burns, P.C. (2001) A re-evaluation of the structure of weeksite, a uranyl silicate framework mineral. The Canadian Mineralogist, 39, 187195.Google Scholar
Jin, G.B., Skanthakumar, S. & Soderholm, L. (2011) Two new neptunyl(V) selenites: a novel cation–cation interaction framework in (NpO2)3(OH)(SeO3)(H2O)2·H2O and a uranophane-type sheet in Na(NpO2)(SeO3)(H2O). Inorganic Chemistry, 50, 62976303.Google Scholar
Jouffret, L., Rivenet, M. & Abraham, F. (2010a) U(VI) oxygen polyhedra as pillars for building frameworks from uranophane-type layers. IOP Conference Series: Materials Science and Engineering, 9, 012028.Google Scholar
Jouffret, L.Rivenet, M. & Abraham, F. (2010b) A new series of pillared uranyl-vanadates based on uranophane-type sheets in the uranium-vanadium-linear alkyl diamine systems. Journal of Solid State Chemistry, 183, 8492.Google Scholar
Jouffret, L., Shao, Z., Rivenet, M. & Abraham, F. (2010c) New three-dimensional inorganic frameworks based on the uranophane-type sheet in monoamine templated uranyl-vanadates. Journal of Solid State Chemistry, 183, 22902297Google Scholar
Klingensmith, A.L. & Burns, P.C. (2007) Neptunium substitution in synthetic uranophane and soddyite. American Mineralogist, 92, 19461951.Google Scholar
Kuta, J., Wang, Z., Wisuri, K., Wander, M.C.F., Wall, N.A. & Clark, A.E. (2013) The surface structure of α-uranophane and its interaction with Eu(III) – an integrated computational and fluorescence spectroscopy study. Geochimica et Cosmochimica Acta, 103, 184196.Google Scholar
Mer, A., Obbade, S., Rivenet, M., Renard, C. & Abraham, F. (2012) [La(UO2)V2O7][(UO2)(VO4)] the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane anion-topology. Journal of Solid State Chemistry, 185, 180186.Google Scholar
Mouhat, F. & Coudert, F.-X. (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B, 90, 224104.Google Scholar
Murphy, W.M. & Grambow, B. (2008) Thermodynamic interpretation of neptunium coprecipitation in uranophane for application to the Yucca Mountain Repository. Radiochimica Acta, 96, 563567.Google Scholar
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. J. Wiley and Sons, New York.Google Scholar
Niu, H., Wei, P., Sun, Y., Chen, X.-Q., Franchini, C., Li, D. & Li, Y. (2011) Electronic, optical, and mechanical properties of superhard cold-compressed phases of carbon. Applied Physics Letters, 99, 031901.Google Scholar
Novacek, R. (1935) Study of some secondary uranium minerals. Věstník Královské České Společnosti Nauk II, 7, 36.Google Scholar
Nye, J.F. (1985) The Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press, New York.Google Scholar
Pearcy, E.C., Prikryl, J.D., Murphy, W.M. & Leslie, B. W. (1994) Alteration of uraninite from the Nopal I deposit, Peña Blanca District, Chihuahua, Mexico, compared to degradation of spent nuclear fuel in the proposed U.S. high-level nuclear waste repository at Yucca Mountain, Nevada. Applied Geochemistry, 9, 713732.Google Scholar
Perdew, J.P., Burke, K. & Ernzerhof, M. (1996) Generalized gradient approximation made simple. Physical Review Letters, 77, 38653868.Google Scholar
Plasil, J. (2014) Oxidation-hydration weathering of uraninite: the current state-of-knowledge. Journal of Geosciences, 59, 99114.Google Scholar
Pugh, S.F. (1954) XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philosophical Magazine, 45, 823843.Google Scholar
Ranganathan, S.L. & Ostoja-Starzewski, M. (2008) Universal elastic anisotropy index. Physical Review Letters, 101, 055504.Google Scholar
Ravindran, P., Fast, L., Korzhavyi, P.A., Johansson, B., Wills, J. & Eriksson, O. (1998) Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2. Journal of Applied Physics, 84, 48914904.Google Scholar
Reuss, A. (1929) Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle. Zeitschrift für Angewandte Mathematik und Mechanik, 9, 4958.Google Scholar
Shuller, L.C., Ewing, R.C. & Becker, U. (2010) Quantum-mechanical evaluation of Np-incorporation into studtite. American Mineralogist, 95, 11511160.Google Scholar
Shuller, L.C., Ewing, R.C. & Becker, U. (2013) Np-incorporation into uranyl phases: a quantum-mechanical evaluation. Journal of Nuclear Materials, 434, 440450.Google Scholar
Shuller, L.C., Bender, W.M., Walker, S.M. & Becker, U. (2014) Quantum-mechanical methods for quantifying incorporation of contaminants in proximal minerals. Minerals, 4, 690715.Google Scholar
Stohl, F.V. & Smith, D.K. (1981) The crystal chemistry of the uranyl silicate minerals. American Mineralogist, 66, 610624.Google Scholar
Troullier, N. & Martins, J.L. (1991) Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43, 19932006.Google Scholar
Tunega, D., Bucko, T. & Zaoui, A. (2012) Assessment of ten DFT methods in predicting structures of sheet silicates: importance of dispersion corrections. Journal of Chemical Physics, 137, 114105.Google Scholar
Viswanathan, K. & Harneit, O. (1986) Refined crystal structure of beta-uranophane, Ca(UO2)2(SiO3OH)2·5H2O. American Mineralogist, 71, 14891493.Google Scholar
Voigt, W. (1928) Lehrbuch der Kristallphysik. Teubner, Leipzig, Germany.Google Scholar
Wall, N.A., Clark, S.B. & McHale, J.L. (2010) Synthesis and characterization of 1:1 layered uranyl silicate mineral phases. Chemical Geology, 274, 149157.Google Scholar
Weck, P.F., Kim, E. & Buck, E.C. (2015) On the mechanical stability of uranyl peroxide hydrates: implications for nuclear fuel degradation. RSC Advances, 5, 7909079097.Google Scholar
Wheaton, V., Majumdar, D., Balasubramanian, K., Chauffe, L. & Allen, P.G. (2003) A comparative theoretical study of uranyl silicate complexes. Chemical Physics Letters, 371, 349359.Google Scholar
Websky, M. (1853) Über die geognostichen Verhaltnisse der Erzlagerstäten von Kupferberg u. Rudelstadt in Schlesien. Zs. d. Deutsche Geologische Gesellschaft, V, 391.Google Scholar
Websky, M. (1859) Ueber Uranophan. Zs. d. Deutsche Geologische Gesellschaft, XI, 384.Google Scholar
Wronkiewicz, D.J., Bates, J.K., Gerding, T.J., Veleckis, E. & Tani, B.S. (1992) Uranium release and secondary phase formation during unsaturated testing of UO2 at 90°C. Journal of Nuclear Materials, 190, 107127.Google Scholar
Wronkiewicz, D.J., Bates, J.K., Gerding, T.J., Veleckis, E. & Tani, B.S. (1996) Ten-year results from unsaturated drip tests with UO2 at 90°C: implications for the corrosion of spent nuclear fuel. Journal of Nuclear Materials, 238, 7895.Google Scholar
Supplementary material: File

Colmenero et al. supplementary material

Colmenero et al. supplementary material 1

Download Colmenero et al. supplementary material(File)
File 1.6 MB