Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T22:03:49.871Z Has data issue: false hasContentIssue false

Structural changes in phenol-intercalulated hydrotalcite caused by heating

Published online by Cambridge University Press:  09 July 2018

J. Cornejo*
Affiliation:
Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Apdo 1052, 41080 Sevilla, Spain
R. Celis
Affiliation:
Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Apdo 1052, 41080 Sevilla, Spain
I. Pavlovic
Affiliation:
Facultad de Ciencias, Departamento de Química Inorgánica e Ingenieńa Química, Universidad de Córdoba, 14004 Córdoba, Spain
M. A. Ulibarri
Affiliation:
Facultad de Ciencias, Departamento de Química Inorgánica e Ingenieńa Química, Universidad de Córdoba, 14004 Córdoba, Spain
M. C. Hermosín
Affiliation:
Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Apdo 1052, 41080 Sevilla, Spain

Abstract

Thermal analysis (DTA-TG-DTG), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, nitrogen adsorption and mercury intrusion porosimetry techniques were used to assess the structural changes induced upon heating of two hydrotalcite-phenol (trichloro- and trinitrophenol, HT-TCP and HT-TNP) complexes, and the results were compared with those obtained for the original hydrotalcite (HT) sample. The DTA revealed thermal effects that depended on the nature of the interlayer ion in the complexes. The total weight loss (TG-DTA) increased from 37% for the original HT to 40% for HT-TCP and 77% HT-TNP, as the amount of phenol increased. The XRD and FTIR spectroscopy showed that the calcination product (550°C) of the HT-phenol complexes was indistinguishable from that formed from the original HT. Since HT-phenol complexes were prepared by phenol adsorption on calcined HT, our results confirm the recyclability of HT-like compounds as sorbents for phenols.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellamy, L.J. (1975) The Infrared Spectra of Complex Molecules (Vol. 1, 3rd edition). Chapman & Hall, New York.Google Scholar
Brunauer, S., Emmett, P.H. & Teller, E. (1938) Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309319.Google Scholar
Cavani, F., Trifiró, F. & Vaccari, A. (1991) Hydrotalcite-type anionic clay minerals: preparation, properties and applications. Catal. Today. 11, 173301.Google Scholar
Celis, R., Koskinen, W.C., Cecchi, A., Bresnahan, G., Carrizosa, M.J., Ulibarri, M.A., Pavlovic, I. & Hermosín, M.C. (1999) Sorption of the ionizable pesticide imazamox by organoclays and organohydrotal cites. J. Environ. Sci. Health, B34, 929941.Google Scholar
Formasari, G., Gazsano, M., Mattensi, D., Trifiró, F. & Vaccari, A. (1995) Structure and reactivity of high surface area Ni/Mg/Al mixed oxides. Appl. Clay Sci. 10, 6982.Google Scholar
Hermosín, M.C., Ulibarri, M.A., Mansour, M. & Cornejo, J. (1992) Assaying sorbents for 2,4-D from waters. Fresenius Environ. Bull. 1, 472481.Google Scholar
Hermosín, M.C., Pavlovic, I., Ulibarri, M.A. & Cornejo, J. (1993) Trichlorophenol adsorption on layered double hydroxide: a potential sorbent. J. Environ. Sci. Health, A(28), 18751888.Google Scholar
Hermosín, M.C., Pavlovic, I., Ulibarri, M.A. & Cornejo, J. (1996) Hydrotalcite as sorbent for trinitrophenol: sorption capacity and mechanism. Water Res. 30, 171177.Google Scholar
Hibino, T., Yamashita, Y., Kosuge, K. & Tsunashima, T. (1995) Decarbonation behavior of Mg-Al-CO3, hydrotalcite-like compounds during heat treatment. Clays Clay Miner. 43, 427432.Google Scholar
Hudson, M.J., Carlino, S. & Apperley, D.C. (1995) Thermal conversion of a layered (Mg/Al) double hydroxide to the oxide. J. Mater. Chem. 5, 323329.Google Scholar
Meyn, M., Beneke, K. & Lagaly, G. (1990) Anion-exchange reactions of layered double hydroxides. Inorg. Chem. 29, 52015207.Google Scholar
Miyata, S. (1980) Physicochemical properties of synthetic hydrotalcites in relation to composition. Clays Clay Miner. 28, 5056.Google Scholar
Onken, B.M. & Traina, S.J. (1997) The sorption of anthracene to humic acid-mineral complexes: effect of fractional organic carbon content. J. Environ. Qual. 26, 126132.Google Scholar
Pavlovic, I., Ulibarri, M.A., Hermosín, M.C. & Cornejo, J. (1997) Sorption of an anionic surfactant from water by a calcined hydrotalcite-like sorbent. Fresenius Environ. Bull. 6, 266271.Google Scholar
Reichle, W.T. (1986) Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). Solid State Ionics. 22, 135141.Google Scholar
Reichle, W.T., Kang, S.Y. & Everhardt, D.S. (1986) The nature of the thermal decomposition of a catalytically active anionic clay mineral. J. Catal. 101, 352359.Google Scholar
Rey, F., Fornés, V. & Rojo, J.M. (1992) Thermal decomposition of hydrotalcites: An infrared and nuclear magnetic resonance spectroscopic study. Chem. Soc. Faraday Trans. 88, 2233–223.Google Scholar
Sato, T., Kato, K., Endo, T. & Shimada, M. (1986) Preparation and chemical properties of magnesium aluminium oxide solid solutions. React. Solids. 2, 253260.Google Scholar
Ulibarri, M.A., Hernandez, M.J. & Cornejo, J. (1987) Changes in textural properties derived from the thermal decomposition of synthetic pyroaurite. Thermochim. Acta. 113, 7986.Google Scholar
Ulibarri, M.A., Luque, J.M. & Cornejo, J. (1990) Heating-induced effects on the anionic clay minerals [Al2Li(OH)6](picrate).nH2O. Materials Chem. Phys. 25, 8190.Google Scholar
Ulibarri, M.A., Pavlovic, I., Hermosín, M.C. & Cornejo, J. (1995) Hydrotalcite-like compounds as potential sorbents of phenols from water. Appl. Clay Sci. 10, 131145.Google Scholar
Vaccari, A. (1995) Introduction to the synthesis and applications of anionic clays. Appl. Clay Sci. 10, 13.Google Scholar