Published online by Cambridge University Press: 14 March 2024
The interface performance between clay–sand mixtures and concrete structures is governed by the mixture's composition and its physical properties. Moisture content and particle-size distribution play important roles in deciding the mixture's arrangement of soil particles, porosity, hydraulic conductivity and behaviour under various mechanical loadings. Application of a polymer interfacial coating can improve the bond performance between soils and concrete mainly via interfacial friction/mechanical interlocking. The present work analyses the development of interfacial strength between clay–sand mixtures and a polymer coating with changes in particle gradation. The multi-scale mechanisms at the interface are investigated, giving primary attention to soil porosity. A 50:50 clay–sand mixture exhibited a greater interfacial adhesive performance compared to other soil mixtures. In addition, the moisture-controlled pores and gradation-controlled pores demonstrated differences in macroscale interfacial strength. Both mercury intrusion porosimetry (MIP) and 129Xe nuclear magnetic resonance (NMR) were utilized to detect the pore structure of the mixtures. 129Xe-NMR revealed the pore distribution of the mixtures as ranging from macropores to nanopores, and MIP complemented the pore information by determining the critical pore entry diameter in the macropore regime. Mesopores dominated with increasing fine sand content until a threshold value was reached; thereafter, merging of pores occurred and macropores dominated.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.