Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T21:30:13.543Z Has data issue: false hasContentIssue false

Palygorskite genesis through silicate transformation in Tunisian continental Eocene deposits

Published online by Cambridge University Press:  09 July 2018

F. Jamoussi
Affiliation:
Laboratoire ‘ Géoressources’, INRST BP 95, 2050 Hamam-Lif, Tunisia
A. Ben Aboud
Affiliation:
Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Facultad de Ciencias, Fuentenueva s/n, 18002, GranadaSpain
A. López-Galindo*
Affiliation:
Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, Facultad de Ciencias, Fuentenueva s/n, 18002, GranadaSpain
*
*E-mail: alberto@ugr.es

Abstract

The mineralogical and geochemical characteristics of Eocene continental sediments in south central Tunisia (Chebket Bouloufa and Jebel Hamri) and in north central Tunisia (Jebel Lessouda and Jebel Rhéouis), which contain considerable amounts of palygorskite, were studied. The clay fraction of the sediments also comprises illite, kaolinite, Mg smectite and Al smectite, together with carbonates (calcite and/or dolomite), quartz, gypsum and feldspars, all of which are present in extremely variable proportions.

The textural characteristics of the samples containing most palygorskite, as well as the chemical composition of the fibres and the contents of certain trace and rare earth elements suggest that the genesis of this fibrous clay is intimately linked to the diagenetic transformation of illite, mixedlayered minerals and/or Al smectite, as has also been observed in contemporaneous deposits in Morocco.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdeljaoued, S. (1983) Etude sédimentologique et structurale de la partie est de la Chagˆne Nord des Chotts (Tunisie méridionale ) . Special thesis, Université Tunis, Tunisia.Google Scholar
Abdeljaoued, S. (1991) Les dolocrè tes et les calcrè tes du Paléocène-Eocène: Tunisie méridionale . PhD thesis, Université Tunis II, Tunisia.Google Scholar
Abdeljaoued, S. (1997) Mode de genèse des palygorskites dans la série continentale éocène de Tunisie mériodionale. Notes du Service Géologique de Tunisie, 63, 1527.Google Scholar
Barahona, E. (1974) Arcillas de ladrillerg´a de la provincia de Granada: evaluación de algunos ensayos de mater ias pr imas . PhD the sis , Universidad de Granada, Spain.Google Scholar
Bédir, M. (1995) Mécanismes géodynamiques des bassins associés aux couloirs de coulissement de la marge Atlasique de la Tunisie. Seismo-stratigraphie, seismo-tectonique et implications pétrolières. PhD thesis, Université Tunis II, Tunisia.Google Scholar
Ben Aboud, A. (1998) Dépôts tertiaires de palygorskite dans des bassins circum-méditerranéens (Maroc, Espagne, Tunisie). Minéralogie, géochimie et genè se . PhD thesis, Universidad de Granada, Spain.Google Scholar
Ben Aboud, A., López-Galindo, A., Fenoll Hach-Alí, P. & Chellaï, E.H. (1997) Caractéristiques minéralogiques et géochimiques des palygorskites tertiaires d’Ida Ou Gaïlal (nord-est de Taroudannt et de Toundout (nord-est de Ouarzazate). Implications génétiques. Comptes Rendu de l’Academie des Sciences Paris, 324, IIa, 189195.Google Scholar
Ben Aboud, A., López-Galindo, A., Fenoll Hach-Alí, P., Jamoussi, F., Bedir, M., Abdeljaoued, S. & Setti, M. (1999) Mineralogy and geochemistry of some Tunisian palygorskitic outcrops. Pp. 10731076 in: Mineral Deposits: Processes to Processing (Stanley, C.J. et al ., editors). Balkema, Rotterdam.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76, 803832.Google Scholar
Bishop, W.P. (1988) Petroleum geology of east-central Tunisia. American Associat ion of Petroleum Geologists Bulletin, 9, 10331058.Google Scholar
Bolle, M.P. & Adatte, T. (2001) Palaeocene-early Eocene climatic evolution in the Tethyan realm: clay mineral evidence. Clay Minerals, 36, 249261.CrossRefGoogle Scholar
Bonnot-Courtois, C. (1981) Géochimie des Terres Rares dans les principaux milieux de formation et de sédimentation des argiles . PhD thesis, Université de Paris-Sud, France.Google Scholar
Boukadi, N. (1994) Structuration de l’Atlas de Tunisie: signification géométrique et cinématique des nuds et des zones d’interférences structurales au contact de grands couloirs tectoniques. PhD thesis, Université Tunis II, Tunisia.Google Scholar
Boukadi, N. & Bédir, M. (1996) L’halocinèse en Tunisie: contexte tectonique et chronologie des événements. Comptes Rendu de l’Academie des Sciences Paris, 322, IIa, 587594.Google Scholar
Burollet, P.F. (1956) Contribution à l’étude stratigraphique de la Tunisie Centrale . Annales des Mines et Géologie, 18, Tunisia.Google Scholar
Chamley, H. (1989) Clay Sedimentology, pp. 7594. Springer-Verlag, Berlin.Google Scholar
Creuzot, G. & Ouali, J. (1989) Extension, diapirisme et compression en Tunisie centrale: le Jebel Es souda. Géodynamique, 4, 3948.Google Scholar
Cullers, R.L., Chaudhuri, S., Arnold, B., Lee, M. & Wolf, C.W. (1975) Rare earth distributions in clay minerals and in the clay-sized fraction of the Lower Permian Havensville and Eskridge shales of Kansas and Oklahoma. Geochimica et Cosmochimica Acta, 39, 16911703.Google Scholar
De Pablo, L. (1996) Palygorskite in Eocene-Oligocene lagoonal environment, Yucatan, Mexico. Revista Mexicana de Ciencias Geológicas, 13, 94103.Google Scholar
Duplay, J. (1988) Géochimie des argiles et géothermométrie des populations monominérales de particules . PhD thesis, Université Strasbourg, France.Google Scholar
Fakhfakh, E. (1999) Identification et caractérisation des argiles fibreuses du centre et du Sud de la Tunisie . DEA thesis, Université Tunis II, Tunisia.Google Scholar
Fleet, A.J. (1984) Aqueous and sedimentary geochemistry of the rare earth elements. Pp 343373 in: Rare Earth Element Geochemistry (Henderson, P., editor). Elsevier Science Pubs., Amsterdam.Google Scholar
Foster, M.D. (1960) Interpretation of the composition of trioctahedral micas. USGS Professional Paper, 354-B, 1149.Google Scholar
Galán, E. & Carretero, I. (1999) A new approach to compositional limits for sepiolite and palygorskite. Clays and Clay Minerals, 47, 399409.CrossRefGoogle Scholar
Hachi, A. (1998) Identification, caractérisation et valorisation des argiles Eocène-Miocène des régions de Kasserine, Fériana et Sébeitla. DEA thesis, Université Tunis II, Tunisia.Google Scholar
Jamoussi, F. (2001) Les argiles de Tunisie: étude minéralogique, géochimique, géotechnique et utilisations industrielles . PhD thesis, Université Tunis El Manar, Tunisia.Google Scholar
Jamoussi, F., Abbès Ch., Fakhfakh, E., Bédir, M., Kharbachi, S., Soussi, M., Zargouni, F. & López- Galindo, A. (2001a) Découverte de l’Eocène continental autour de l’archipel de Kasserine, aux Jebels Rhéouis, Boudinar et Chamsi en Tunisie centroméridionale: nouvelles implications paléogéographiques. Comptes Rendu de l’Academie des Sciences Paris, 333, II, 329335.Google Scholar
Jamoussi, F., López-Galindo, A., Morales, S. and Zargouni, F. (2001b) The chart of Tunisian clays. Mineralogica Polonica, 32, 7986.Google Scholar
Jones, B.F. & Galán, E. (1988) Sepiolite and palygorskite. Pp. 631674 in. Hydrous Phyllosilicates (Exclusive of Micas) (S.W. Bailey, editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.Google Scholar
Kadri, A. (1988) Evolution tectono-sédimentaire (Aptien- Quaternaire) des Dj. Koumine, Hamra et Lessouda (Tunisie centrale) . Thesis 3rd cycle, Université Paris X, Orsay, France.Google Scholar
Kadri, A., Matmati, F., Ben Ayed, N. & Ben Haj Ali, M. (1986) Découverte de l’Eocène inférieur continental au Jebel Lessouda (Tunisie centrale). Notes du Service Géologique de Tunisie, 51, 5359.Google Scholar
Karakas, Z. & Kadir, S. (1998) Mineralogical and genetic relationships between carbonate and sepiolite-palygorskite formations in the neogene lacustrine Konya Basin, Turkey. Carbonates and Evaporites, 13, 198206.Google Scholar
Khademi, H. & Mermut, A.R. (1998) Source of palygorskite in gypsiferous arid soils and associated sediments from central Iran. Clay Minerals, 33, 561578.Google Scholar
López-Galindo, A., Torres-Ruiz, J. and González-López, J.M. (1996) Mineral quantification in sepiolitepalygorskite deposits using X-ray diffraction and chemical data. Clay Minerals, 31, 217224.CrossRefGoogle Scholar
Martín de Vidales, J.L., Pozo, M., Medina, J.A. & Leguey, S. (1988) Formación de sepiolita-paligorskita en litofacies lutítico-carbonáticas en el sector de Borox-Esquivias (Cuenca de Madrid). Estudios Geológicos, 44, 718.Google Scholar
McLennan, S.M. (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Pp. 169200 in. Geochemistry and Mineralogy of Rare Earth Elements (B.R. Lipin & G.A. McKay, editors). Reviews in Mineralogy, 21. Mineralogical Society of America, Washington, D.C.Google Scholar
Millot, G. (1964) Géologie des Argiles. Masson, Paris, pp. 163209.Google Scholar
Nesbitt, H.W. (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Nature, 279, 206210.Google Scholar
Paquet, H., Duplay, J., Valleron-Blanc, M.M. & Millot, G. (1987) Octahedral compositions of individual particles in smectite-paly gorskite assemblages. Proceedings of the International Clay Conference, Denver, 1985, 7377.Google Scholar
Pochitaloff, A. (1968) Rapport de fin du sondage Tanit 1 (Rapport SEREPT, unpublished).15 pp.Google Scholar
Sassi, S., Triat, J.M., Truc, G. & Millot, G. (1984) Découverte de l’Eocène continental en Tunisie centrale: la formation du Djebel Gharbi et ses encrouˆ tements carbonatés. Comptes Rendu de l’Academie des Science Paris, 299, II, 357364.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. United States Geological Survey Professional Paper, 391-C, 31 pp.Google Scholar
Singer, A. (1984) Pedogenic palygorskite in the arid environment. Pp. 169177 in. Palygor skite- Sepiolite. Occurrences, Genesis and Uses (Singer, A. & Galán, E., editors). Developments in Sedimentology, 37, Elsevier, .Amsterdam.Google Scholar
Soussi, M., Abbès Ch., Belayouni, H. & Boukadi, N. (1996) Sédimentologie, stratigraphie séquentielle et caractéristiques géochimiques des séries du Trias moyen et supérieur de l’Axe nord-sud (Tunisie centrale). Proceeding of the 5th Tunisian Petroleum Exploration Conference, 10, 275285.Google Scholar
Srasra, E., Jamoussi, F., Zargouni, F. & Ferid, M. (1995) E´ tude physico-chimique de la palygorskite carbonatée de l’Eocène continental de Chebket Bouloufa. Revue du Service Géologique de Tunisie, 61, 109119.Google Scholar
Suárez, M., Robert, M., Elsass, F. & Martín-Pozas, J.M. (1994) Evidence of a precursor in the neoformation of palygorskite. New data by analytical electron microscopy. Clay Minerals, 29, 255264.Google Scholar
Swan, A.R.H. & Sandilands, M. (1995) Introduction to Geological Data Analysis . Blackwell Science, Oxford, UK, pp. 328397.Google Scholar
Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: its Composition and Evolution . Blackwell, Oxford, UK, 312 pp.Google Scholar
Torres-Ruíz, J., López-Galindo, A., González-López, J.M. & Delgado, A. (1994) Geochemistry of Spanish sepiolite-palygorskite deposits: genetic considerations based on trace elements and isotopes. Chemical Geology, 112, 221245.Google Scholar
Truc, G. (1981) Encrouˆtement calcaire (calcrète) de Tunisie. Premier Congrès National des Sciences de la Terre, Tunis, pp. 102103.Google Scholar
Turner, D.R. & Whitfield, M. (1979) Control of seawater composition. Nature, 281, 468469.Google Scholar
Velde, B. (1985) Clay Minerals. A Physico-chemical Explanation of their Occurrences . Developments in Sedimentology, 40. Elsevier, .Amsterdam.Google Scholar
Weaver, C.E. & Pollard, L.D. (1973) The Chemistry of Clay Minerals . Developments in Sedimentology, 15. Elsevier, .Amsterdam.Google Scholar
Zargouni, F. (1985) Tectonique de l’Atlas méridional de Tunisie. Evolution géométrique et cinématique des structures en zone de cisaillement . PhD thesis, Université Louis Pasteur, Paris.Google Scholar
Zouari, H. (1984) Etude structurale du Jebel Chaambi (Tunisie centrale). Relation entre la minéralisation et la structure . Thesis 3rd cycle, Université Franche Compté, Besançon, France.Google Scholar