Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T21:50:24.191Z Has data issue: false hasContentIssue false

Mineralogy and grain-size distribution of clay-rich rock units of the Algarve Basin (South Portugal)

Published online by Cambridge University Press:  09 July 2018

M. J. Trindade*
Affiliation:
Campus Tecnológico e Nuclear, Instituto Superior Ténico, Universidade Técnica de Lisboa, EN 10, 2686-953 Sacavém, Portugal GeoBioTec - GeoBiociências, GeoTecnologias e GeoEngenharias, Universidade de Aveiro, Portugal
F. Rocha
Affiliation:
Departamento de Geociências, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal GeoBioTec - GeoBiociências, GeoTecnologias e GeoEngenharias, Universidade de Aveiro, Portugal
M. I. Dias
Affiliation:
Campus Tecnológico e Nuclear, Instituto Superior Ténico, Universidade Técnica de Lisboa, EN 10, 2686-953 Sacavém, Portugal GeoBioTec - GeoBiociências, GeoTecnologias e GeoEngenharias, Universidade de Aveiro, Portugal
M. I. Prudêncio
Affiliation:
Campus Tecnológico e Nuclear, Instituto Superior Ténico, Universidade Técnica de Lisboa, EN 10, 2686-953 Sacavém, Portugal GeoBioTec - GeoBiociências, GeoTecnologias e GeoEngenharias, Universidade de Aveiro, Portugal
*

Abstract

A detailed survey of the most clay-rich rock units of the Meso-Cenozoic geological section exposed in the Algarve Basin (South Portugal) was performed and data were analysed for the grain-size distribution and mineralogy (whole rock and clay fraction), aimed at a compositional study of the clay-rich sediments and their depositional environment. Granulometry was obtained using wet sieving and laser diffraction by attenuation of X-rays, and the mineralogical study was carried out by X-ray diffraction.

Most clay-rich rock units of the Algarve are classified as silty clays and clayey silts, and only a minority is coarser. The mineralogical study enabled us to define two main types of clays: (1) noncalcareous clays, consisting largely of quartz and clay minerals, with goethite as the typical Fe-rich phase (sediments of Carboniferous, Neogene and Quaternary age and Cretaceous siliciclastic clays); and (2) calcareous clays, which can be calcite-rich clays (Middle and Upper Jurassic) or dolomiterich clays (Triassic and Lower Jurassic), the latter typically containing hematite as an accessory phase. Plagioclase, K-feldspar, and Ti-oxides are often accessory phases, whereas ankerite, anhydrite, gypsum and opal are rare.

In the clay fraction illite generally predominates, resulting probably from weathering of preexisting rocks, as well as the less frequent Fe-chlorite, pointing to incipient chemical alteration under semi-arid climatic conditions. Kaolinite occurs in diverse proportions, being especially abundant in Cretaceous and Cenozoic units; it is mainly related to chemical weathering in continental environments under humid conditions. As the Atlantic Ocean opened during Triassic and the continental environment evolved to a shallow-marine environment with evaporitic conditions, smectite became more expressive, being sometimes accompanied by other Mg-rich phases (chlorite, sepiolite, corrensite and palygorskite). Especially during the Cenozoic the proportion of different phases in the clay mineral association of the sediments reflects the control of tectonic movements and fluctuations in sea level during their deposition.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlberg, A., Arndorff, A. & Guy-Ohlson, D. (2002) Onshore climate change during the Late Triassic marine inundation of the Central European Basin. Terra Nova, 14, 241–248.CrossRefGoogle Scholar
Ahlberg, A., Olsson, I. & Šimkevičius, P. (2003) Triassic-Jurassic weathering and clay mineral dispersal in basement areas and sedimentary basins of southern Sweden. Sedimentary Geology, 161, 15–29.CrossRefGoogle Scholar
Alonzo-Azcárate, J., Arche, A., Barrenechea, J.F., López-Gómez, J., Luque, F.J. & Rodas, M. (1997) Palaeogeographical significance of clay mineral assemblages in the Permian and Triassic sediments of the SE Iberian Ranges, eastern Spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 136, 309–330.Google Scholar
Andreola, F., Castellini, E., Manfredini, T., Romagnoli, M. (2004) The role of sodium hexametaphosphate in the dissolution process of kaolinite and kaolin. Journal of the European Ceramic Society, 24, 2113–2124.CrossRefGoogle Scholar
Árkai, P. (2002) Phyllosilicates in very low-grade metamorphism: Transformation to micas. Pp. 463–478 in: Micas: Crystal Chemistry and Metamorphic Petrology, Reviews in Mineralogy and Geochemistry, 46 (Mottana, A., Sassi, F.P., Thompson, J.B. & Guggenheim, S., editors). Mineralogical Society of America, Washington, D.C.Google Scholar
Ashley, G.M. (1978) Interpretation of polymodal sediments. Journal of Geology, 86, 411–421.CrossRefGoogle Scholar
Bagnold, R.A. & Barndorff-Nielsen, O. (1980) The pattern of natural size distributions. Sedimentology, 27, 199–207.CrossRefGoogle Scholar
Barahona, E. (1974) Arcillas de ladrillería de la provincia de Granada: evaluación de algunos ensayos de materias primas. PhD thesis, University of Granada, Spain.Google Scholar
Barrenechea, J.F., Rodas, M., Frey, M., Alonso-Azcárate, J. & Mas, J.R. (2000) Chlorite, corrensite, and chlorite-mica in late Jurassic fluvio-lacustrine sediments of the Cameros Basin of northeastern Spain. Clays and Clay Minerals, 48, 256–265.CrossRefGoogle Scholar
Battaglia, S., Leoni, L. & Sartori, F. (2004) The Kübler index in late diagenetic to low-grade metamorphic pelites: a critical comparison of data from 10 Å and 5 Å peaks. Clays and Clay Minerals, 52, 85–105.CrossRefGoogle Scholar
Berthou, P.Y., Correia, F., Prates, S. & Taugourdeau, J. (1983) Essai de Synthise du Crétacé de l’ Algarve: Biostratigraphie, paléogéographie, sédimentation argileuse. Bulletin D’Inferior des Geologie du Bassin de Paris, 20, 3–24.Google Scholar
Birsoy, R. (2002) Formation of sepiolite-palygorskite and related minerals from solution. Clays and Clay Minerals, 50, 736–745.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of American Bulletin, 76, 803–832.CrossRefGoogle Scholar
Blanc-Valleron, M.M. & Thiry, M. (1997) Clay minerals, paleoweathering, paleolandscapes and climatic sequences: the Paleogene continental deposits in France. Pp. 223–247 in: Soils and Sediments: Mineralogy and Geochemistry (Paquet, H. & Clauer, N., editors). Springer, Berlin.Google Scholar
Cachão, M. (1995a) Utilização de nanofósseis calcários em biostratigrafia, paleocenografia e paleocologia. Aplicaçõs ao Neogénico do Algarve (Portugal) e do Mediterrâneo Ocidental (ODP 653) e a problemática de Coccolithus pelagicus. PhD thesis, University of Lisbon, Portugal.Google Scholar
Cachaão, M. (1995b) Novo enquadramento estratigráfico para o Neogénico marinho do Algarve: implicaçõs paleogeográficas e tectónicas. Memórias, 4, 57–61.Google Scholar
Cachaão, M. & Silva, C.M. (1992) Neogene palaeogeographic evolution of Algarve Basin (Southern Portugal): a two step model. Preliminary data. Gaia, 4, 39–42.Google Scholar
Cachaão, M., Boski, T., Moura, D., Dias, R.P., Silva, C.M., Santos, A., Pimentel, N. & Cabral, J. (1998) Proposta de articulação das unidades sedimentares neogénicas e quaternárias do Algarve (Portugal). Comunicaçõs do Instituto Geológico e Mineiro, 84, A169–A172.Google Scholar
Castaño, R., Doval, M. & Marfil, R. (1987) Naturaleza, origin y distribucion de los minerales de la arcilla en la cuenca Triasica (Keuper) del area de Valencia. Cuadernos Geología Ibérica, 11, 339–361.Google Scholar
Chamley, H. (1989) Clay Sedimentology. Springer, Berlin.CrossRefGoogle Scholar
Chamley, H. & Debrabant, P. (1984) Paleoenvironmental history of the North Atlantic region from mineralogical and geochemical data. Sedimentary Geology, 40, 151–167.CrossRefGoogle Scholar
Daoudi, L. & Deconinck, J-F. (1994) Contrôles paléoge ‘ographique et diagénétique dês sucessions sédimentaires argileuses du Bassin Atlasique au Crétacé (Haut-Atlas Occidental, Maroc). Journal of African Earth Sciences, 18, 123–141.CrossRefGoogle Scholar
Dias, M.I. (1998) Caracterização mineralógica e tecnológica de argilas especiais de bacias terciárias portuguesas. PhD thesis, University of Lisbon.Google Scholar
Dias, M.I. & Rocha, F. (2001) Geoquı’mica de um depósito de argilas fibrosas – Malpica do Tejo, Portugal. Pp. 448–451 in: Proceedings of the VI Congresso de Geoquímica dos Países de Língua Portuguesa e XII Semana de Geoquímic. Universidade do Algarve, Faro, Portugal.Google Scholar
Dias, M.I., Viegas, C., Gouveia, M.A., Marques, R., Franco, D. & Prudêncio, M.I. (2009) Geochemical fingerprinting of Roman pottery production from Manta Rota kilns (Southern Portugal). Pp. 83–90 in: Vessels inside and outside. EMAC’07 (Biró, K.T., Szilágyi, V. & Kreiter, A., editors). Hungarian National Museum, Budapest, Hungary.Google Scholar
Esquevin, J. (1969) Influence de la composition chimique des illites sur la cristallinité. Bulletin du Centre d’E’ tudes et de Recherches Scientifiques. Bulletin du Centre de Recherche de Pau - Société Nationale des Pétroles d’Aquitaine, 3, 147–154.Google Scholar
Fernández-Caliani, J.C. & Galán, E. (1992) Influence of tectonic factors on illite crystallinity: a case study in the Iberian pyrite belt. Clay Minerals, 27, 385–388.CrossRefGoogle Scholar
Galán, E. & Castillo, A. (1984) Sepiolite-palygorskite in the Spanish Tertiary basin: genetical patterns in continental environments. Pp. 87–124 in: Palygorskite-sepiolite, occurrences, genesis and uses. Developments in Sedimentology, 37 (Singer, A. & Galán, E., editors). Elsevier, Amsterdam.Google Scholar
Gibbs, R.J. (1977) Clay mineral segregation in the marine environment. Journal of Sedimentary Petrology, 47, 237–243.Google Scholar
Gibson, T.G., Bybell, L.M. & Mason, D.B. (2000) Stratigraphic and climatic implications of clay mineral changes around the Paleocene/Eocene boundary of the northeastern US margin. Sedimentary Geology, 134, 65–92.Google Scholar
Heimhofer, U., Adatte, T., Hochuli, P.A., Burla, S. & Weissert, H. (2008) Coastal sediments from the Algarve: low-latitude climate archive for the Aptian-Albian. International Journal of Earth Sciences, 97, 785–797.CrossRefGoogle Scholar
Hendriks, F., Kellner, T. & Liebermann, L. (1988) Origin and evolution of Upper Triassic to Miocene claymineral associations from the eastern Algarve of Portugal. Ciências da Terra, 9, 129–140.Google Scholar
Hillier, S. (1995) Erosion, sedimentation and sedimentary origin of clays. Pp. 162–219 in: Origin and Mineralogy of Clays: Clays and the Environment (Velde, B., editor). Springer, Berlin.Google Scholar
Hower, J., Eslinger, E.V., Hower, M.E. & Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediments. 1. Mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725–737.2.0.CO;2>CrossRefGoogle Scholar
Jeans, C.V. (2006a) Clay mineralogy of the Cretaceous strata of the British Isles. Clay Minerals, 41, 47–150.Google Scholar
Jeans, C.V. (2006b) Clay mineralogy of the Jurassic strata of the British Isles. Clay Minerals, 41, 187–307.Google Scholar
Jeans, C.V. (2006c) Clay mineralogy of the Permo- Triassic strata of the British Isles: onshore and offshore. Clay Minerals, 41, 309–354.Google Scholar
Jeans, C.V., Mitchell, J.G., Scherer, M. & Fisher, M.J. (1994) Origin of the Permo-Triassic clay mica assemblage. Clay Minerals, 29, 575–589.CrossRefGoogle Scholar
Jeans, C.V., Wray, D.S., Merriman, R.J. & Fisher, M.J. (2000) Volcanogenic clays in Jurassic and Cretaceous strata of England and the North Sea Basin. Clay Minerals, 35, 25–55.Google Scholar
Jones, B.F. & Galán, E. (1988) Sepiolite and palygorskite. Pp. 631–674 in: Hydrous Phyllosilicates (Exclusive of Micas). Reviews in Mineralogy, 19 (S.W. Bailey, editor). Mineralogical Society of America, Washington D.C.Google Scholar
Kisch, H.J. (1991) Illite crystallinity: recommendations on sample preparation, X-ray diffraction settings, and interlaboratory samples. Journal of Metamorphic Geology, 9, 665–670.CrossRefGoogle Scholar
Krumm, H. (1969) A scheme of clay mineral stability in sediments based on clay mineral distribution in Triassic sediments of Europe. Pp. 313–324 in: Proceedings of the International Clay Conference. Tokyo.Google Scholar
Kübler, B. (1967) La cristallinité de l’illite et les zones tout a fait supérieures de métamorphisme. Pp. 105–112 in: Colloque sur les étages tectoniques (J.P. Schaer, editor). A la Baconniere, Neuchâtel.Google Scholar
Lippmann, F. & Berthold, C. (1992) Der Mineralbestand des Unteren Muschelkalkes von Geislingen bei Schwäbisch Hall (Deutschland). Neues Jahrbuch für Mineralogie, Abhandlungen, 64, 183–209.Google Scholar
López-Aguayo, F. & Caballero, M.A. (1973) Los minerales de la arcilla y su contribución a la diferenciación de facies sedimentarias. Estudios Geológicos, 29, 131–143.Google Scholar
Manuppella, G. (1988) Litostratigrafia e tectónica da Bacia Algarvia. Geonovas, 10, 67–71.Google Scholar
Manuppella, G. (coord.) (1992) Carta Geológica da Região do Algarve, na escala 1:100 000. Nota Explicativa. Serviços Geológicos de Portugal.Google Scholar
Manuppella, G., Moreira, J.B., Grade, J.M.L. & Moura, A.A.C. (1985) Contribuição para o conhecimento das argilas do Algarve. Estudos, Notas e Trabalhos, 27, 59–76.Google Scholar
Marques, B. (1983) O Oxfordiano-Kimmeridgiano do Algarve oriental: estratigrafia, paleobiologia (Ammonoidea) e paleobiogeografia. PhD thesis, University of Lisbon, Portugal.Google Scholar
Martins, L. & Kerrich, R. (1998) Magmatismo toleítico continental no Algarve (sul de Portugal): um exemplo de contaminação crustal “in situ”. Comunicaçõs do Instituto Geológico e Mineiro, 85, 99–116.Google Scholar
Martins, V., Dubert, J., Jouanneau, J.M., Weber, O., Silva, E.F., Patinha, C., Dias, J.M.A. & Rocha, F. (2007) A multiproxy approach of the Holocene evolution of shelf–slope circulation on the NW Iberian Continental Shelf. Marine Geology, 239, 1–18.CrossRefGoogle Scholar
Meunier, A. (2005) Clays. Springer, Berlin.Google Scholar
Millot, G. (1964) Géologie des Argiles. Masson, Paris.Google Scholar
Molina-Ballestreros, E., Garcia-Talegon, J. & Vicente-Hernandez, M.A. (1997) Palaeoweathering profiles developed on Iberian Hercynian Basement and their relationship to the oldest Tertiary surface in central and western Spain. Pp. 175–185 in: Paleosurfaces: Recognition, Reconstruction and Palaeoenvironmental Interpretation (M. Widowson, editor). Special Publication, 120, Geological Society of London.CrossRefGoogle Scholar
Moore, D.M. & Jr.Reynolds, R.C. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford.Google Scholar
Moreira, J.C.B. (1991) Matérias primas não-metálicas para o abastecimento da indústria cerâmica. Geonovas, 2, 1–15.Google Scholar
Moura, D., Veiga-Pires, C., Albardeiro, L., Boski, T., Rodrigues, A.L. & Tareco, H. (2007) Holocene sea level fluctuations and coastal evolution in the central Algarve (southern Portugal). Marine Geology, 237, 127–142.Google Scholar
Munhá, J. (1990) Metamorphic evolution of the South Portuguese Zone/Pulo do Lobo Zone. Pp. 363–368 in Pre-Mesozoic Geology of Iberia (Dallmeyer, R.D. & García, E. Martínez, editors). Spring-Verlag, Berlin.Google Scholar
Net, L.I., Alonso, M.S. & Limarino, C.O (2002) Source rock and environmental control on clay mineral associations, Lower Section of Paganzo Group (Carboniferous), Northwest Argentina. Sedimentary Geology, 152, 183–199.Google Scholar
Oliveira, A., Rocha, F., Rodrigues, A., Jouanneau, J., Dias, A., Weber, O. & Gomes, C. (2002) Clay minerals from the sedimentary cover from the Northwest Iberian shelf. Progress in Oceanography, 52, 233–247.Google Scholar
Oliveira, J.T. (1990) Stratigraphy and synsedimentary tectonism. Pp. 334–347 in: Pre-Mesozoic Geology of Iberia (Dallmeyer, R.D. & García, E. Martínez, editors). Spring-Verlag, Berlin.Google Scholar
Ortega Huertas, M., Martinez Ruiz, F., Palomo, I. & Chamley, H. (1995) Comparative mineralogical and geochemical clay sedimentation in the Betic Cordilleras and Basque-Cantabrian basin areas at the Cretaceous-Tertiary boundary. Sedimentary Geology, 94, 209–227.Google Scholar
Palomo, I. (1987) Mineralogía y geoquímica de sedimentos pelágicos del Jurásico inferior de las Cordilleras Béticas (SE España). PhD thesis, University of Granada, Spain.Google Scholar
Parrish, J.T. (1993) Climate of the supercontinent Pangea. Journal of Geology, 101, 215–233.CrossRefGoogle Scholar
Pereira, V.M.C. (1970) Substâncias minerais nao metálicas do Distrito de Faro. Contribuição para o seu conhecimento. Estudos, Notas e Trabalhos, 19, 323–361.Google Scholar
Prates, S.C. (1986) O Cretácico detrítico do Algarve. PhD thesis, University of Lisbon, Portugal.Google Scholar
Prudêncio, M.I., Sequeira Braga, M.A., Paquet, H., Waerenborgh, J.C., Pereira, L.C.J. & Gouveia, M.A. (2002) Clay mineral assemblages in weathered basalt profiles from central and southern Portugal: climatic significance. Catena, 49, 77–89.CrossRefGoogle Scholar
Pye, K. & Blott, S.J. (2004) Particle size analysis of sediments, soils and related particulate materials for forensic purposes using laser granulometry. Forensic Science International, 144, 19–27.Google Scholar
Rey, J. (1986) Micropaleontological assemblages, paleoenvironments and sedimentary evolution of the Cretaceous deposits in the Algarve (Southern Portugal). Palaeogeography, Palaeoclimatology, Palaeoecology, 55, 230–246.CrossRefGoogle Scholar
Roberts, B., Merriman, R.J. & Pratt, W. (1991) The influence of strain, lithology and stratigraphical depth on white mica (illite) crystallinity in mudrocks from the vicinity of the Corris Slate Belt, Wales: implications for the timing of metamorphism in the Welsh Basin. Geological Magazine, 128, 633–645.CrossRefGoogle Scholar
Rocha, F.J.F.T. (1993) Argilas aplicadas a estudos litoestratigráficos e paleoambientais na bacia sedimentar de Aveiro. PhD thesis, University of Aveiro, Portugal.Google Scholar
Rocha, F. & Gomes, C. (1995) Paleoenvironmental reconstruction of the Aveiro region during Cretaceous based on clay mineralogy. Cretaceous Research, 16, 187–194.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition X-ray and chemical data for the Pierre Shale. United States Geological Survey, Professional Paper, 391-C, 1–31.Google Scholar
Shepard, F.P. (1954) Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Petrology, 24, 151–158.Google Scholar
Shoval, S. (2004) Deposition of volcanogenic smectite along the southeastern Neo-Tethys margin during the oceanic convergence stage. Applied Clay Science, 24, 299–311.Google Scholar
Simon-Coiçon, R., Thiry, M. & Schmitt, J.M. (1997) Variety and relationships of weathering features along the early Tertiary palaeosurface in the southwestern French Massif Central and the nearby Aquitain Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 129, 51–79.Google Scholar
Singer, A. (1984) The paleoclimatic interpretation of clay minerals in sediments. A review. Earth Science Reviews, 21, 251–293.Google Scholar
Terrinha, P. (1998) Structural geology and tectonic evolution of the Algarve Basin, South Portugal. PhD thesis, Imperial College, London.Google Scholar
Terrinha, P., Rocha, R., Rey, J., Cachao, M., Moura, D., Roque, C., Martins, L., Valadares, V., Cabral, J., Azevedo, M.R., Barbero, L., Clavijo, E., Dias, R. P., Gafeira, J., Matias, H., Matias, L., Madeira, J., Marques da Silva, C., Munhá, J., Rebelo, L., Ribeiro, C., Vicente, J. & Youbi, N. (2006) A Bacia do Algarve: Estratigrafia, paleogeografia e tectónica. Pp. 247–316 in: Geologia de Portugal no Contexto da Ibéria (Dias, R., Araújo, A., Terrinha, P. & Kullberg, J.C., editors). University of Évora, Portugal.Google Scholar
Thiry, M. (2000) Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth Science Reviews, 49, 201–221.CrossRefGoogle Scholar
Thiry, M. & Jacquin, T. (1993) Clay mineral distribution related to rift activity, sea level changes and paleoceanography in the Cretaceous of the Atlantic Ocean. Clay Minerals, 28, 61–84.CrossRefGoogle Scholar
Thorez, J. (1976) Practical Identification of Clay Minerals. G. Lelotte, Belgium.Google Scholar
Trindade, M.J.F. (2007) Geoquímica e mineralogia de argilas da Bacia Algarvia: transformaçõs térmicas. PhD thesis, University of Aveiro, Portugal.Google Scholar
Trindade, M.J., Rocha, F. & Dias, M.I. (2006) Geochemistry and mineralogy of a Cretaceous sedimentary profile from central Algarve (Portugal). Journal of Geochemical Exploration, 88, 450–453.Google Scholar
Trindade, M.J., Rocha, F. & Dias, M.I. (2010) Geochemistry and mineralogy of clays from the Algarve Basin, Portugal: a multivariate approach to palaeoenvironmental investigations. Current Analytical Chemistry, 6, 43–52.Google Scholar
Velde, B. (1985) Clay minerals. A physico-chemical explanation of their occurrence. Developments in Sedimentology, 40. Elsevier, Amsterdam.Google Scholar
Vera, J.A., Palomo, I. & Ortega Huertas, M. (1989) Influencia del paleokarst en la mineralogía de arcillas del lias de Algarinejo (Subbético Medio). Geogaceta, 6, 16–19.Google Scholar
Weaver, C.E. (1989) Clays, Muds and Shales. Developments in Sedimentology, 44. Elsevier, Amsterdam.Google Scholar
White, J.L. (1962) X-ray diffraction studies on weathering of muscovite. Soil Science, 93, 16–21.Google Scholar