Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T00:42:45.209Z Has data issue: false hasContentIssue false

Mineralogical and trace element composition of clay-sized fractions from Albian siliciclastic rocks (Oliete Basin, NE Spain)

Published online by Cambridge University Press:  09 July 2018

J. M. González López
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50.009, Zaragoza, Spain
B. Bauluz*
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50.009, Zaragoza, Spain
A. Yuste
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50.009, Zaragoza, Spain
M. J. Mayayo
Affiliation:
Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50.009, Zaragoza, Spain
*

Abstract

Mineralogical and geochemical techniques have been used to determine the role of minerals in controlling the trace element composition of a set of clay-sized fractions from Albian siliciclastic rocks in NE Spain. These clay-sized fractions are composed of kaolinite and illite, minor quantities of quartz, and accessory heavy minerals. Kaolinite has a smaller crystal size than illite, accounting for its relative concentration in these fractions. The µm-sized heavy minerals are rutile, Fe-Ti- and Fe-oxides, zircon, pyrite, cassiterite, monazite and xenotime. Geochemical data indicate that most of the trace elements are relatively concentrated in clay-sized fractions, except for Zr, Hf, Y and HREE. Statistical treatment shows three different associations in the clay-sized fractions: (1) Rb, Cs and Ba with clay phyllosilicates, especially illite; (2) REE with Th, Y and P phases; and (3) Sc, Cr and V with Ti- and Nb oxides. Therefore, these data do not support the dominant REE control by clay mineralogy that other authors have reported.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilar, M.J., Ramírez del Pozo, J. & Riba, O. (1971) Algunas precisiones sobre la sedimentación y paleoecología del Cretácico inferior en la zona de Utrillas Villarroya de los Pinares (Teruel). Estudios Geológicos, 27, 497–512.Google Scholar
Basir, S.R. & Balakrishnan, S. (1999) Geochemistry of sphene from granodiorites surrounding the Hutti- Maski Schist Belt: significance to rare earth element (REE) modelling. Journal of the Geological Society of India, 54, 107–119.Google Scholar
Bathia, M.R. (1985) Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control. Sedimentary Geology, 45, 97–113.Google Scholar
Bathia, M.R. & Crook, K.A.W. (1986) Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193.Google Scholar
Bauluz, B., Mayayo, M.J., Yuste, A., Fernández-Nieto, C. & González López, J.M. (2003) Occurrence and genesis of kaolinite in sedimentary deposits from the Southern Iberian Range (Spain). Geophysical Research Abstracts, 5, 06836.Google Scholar
Bea, F. (2001) The influence of accessory minerals in the geochemistry of granite rocks. Pp. 17–33 in: Actas III Congreso de Geoquímica (Lago, M., Arranz, E. & Galé, C., editors), Zaragoza.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and ocean. Geological Society of American Bulletin, 76, 803–832.CrossRefGoogle Scholar
Caggianelli, A., Fiore, S., Mongelli, G. & Salvemini, A. (1992) REE distribution in the clay fractions of pelites from the southern Apennines, Italy. Chemical Geology, 99, 253–263.CrossRefGoogle Scholar
Casillas, R., Nagy, G., Pantó G., BraÈndle, J. & Fó rizs, I. (1995) Occurrence of Th, U, Y, Zr and REE-bearing accessory minerals in late-Variscan granitic rocks from the Sierra de Guadarrama (Spain). European Journal of Mineralogy, 7, 989–1006.CrossRefGoogle Scholar
Cliff, G. & Lorimer, G.W. (1975) The quantitative analysis of thin specimens. Journal of Microscopy, 103, 203–207.CrossRefGoogle Scholar
Condie, K.C. (1991) Another look at rare earth elements in shales. Geochimica et Cosmochimica Acta, 55, 2527–2531.CrossRefGoogle Scholar
Condie, K.C., Dengate, J. & Cullers, R.L. (1995) Behavior of rare earth elements in a paleoweathering profile on granodiorite in the front range, Colorado, USA. Geochimica et Cosmochimica Acta, 59, 279–294.CrossRefGoogle Scholar
Courtois, C. & Chamley, H. (1978) Terres rares et minéraux argileux dans le Crétacé et le Cénozoique de la marge atlantique orientale. Comptes Rendus de l'Academie des Sciences de Paris, 286, 671–674.Google Scholar
Cox, R., Lowe, D.R. & Cullers, R.L. (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59, 2919–2940.CrossRefGoogle Scholar
Crichton, J.G. & Condie, K.C. (1993) Trace elements as source indicators in cratonic sediments: a case study from the Proterozoic Libby Creek Group, south- western Wyoming. The Journal of Geology, 113, 319–332.Google Scholar
Cullers, R.L. (1995) The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in the Wet Mountains region, Colorado, U.S.A. Chemical Geology, 123, 107–131.CrossRefGoogle Scholar
Cullers, R.L., Chaudhuri, S., Arnold, B., Lee, M. & Wolf, C.W. Jr. (1975) Rare earth distributions in clay minerals and in the clay-size fraction of the Lower Permian Havensville and Eskridge shales of Kansas and Oklahoma. Geochimica et Cosmochimica Acta, 39, 1691–1703.CrossRefGoogle Scholar
Cullers, R.L., Chaudhuri, S., Kilbane, N. & Koch, R. (1979) Rare earths in size fractions and sedimentary rocks of Pennsylvanian-Permian age from the mid- continent of the USA. Geochimica et Cosmochimica Acta, 43, 1285–1301.CrossRefGoogle Scholar
Cullers, R.L., Barret, T., Carlson, R. & Robinson, B. (1987) Rare-earth element and mineralogical changes in Holocene soil and stream sediment: a case study in the Wet Mountains, Colorado, USA. Chemical Geology, 63, 275–295.CrossRefGoogle Scholar
Elderfield, E., Upstill-Goddard, R. & Sholkovitz, E.R. (1990) The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochimica et Cosmochimica Acta, 54, 971–991.CrossRefGoogle Scholar
González López, J.M., Bauluz, B., Fernández-Nieto, C. & Yuste Oliete, A. (2005) Factors controlling the trace- element distribution in fine-grained rocks: the Albian kaolinite-rich deposits of the Oliete Basin (NE Spain). Chemical Geology, 214, 1–19.Google Scholar
Gromet, L.P. & Silver, L.T. (1983) Rare earth element distributions among minerals in a granodiorite and their petrogenetic implications. Geochimica et Cosmochimica Acta, 47, 925–939.Google Scholar
Hinton, R.W. & Upton, B.G.J. (1991) The chemistry of zircon: variations within and between large crystals from syenite and alkali basalts xenoliths. Geochimica et Cosmochimica Acta, 55, 3287–3302.Google Scholar
Koeppenkastrop, D. & De Carlo, E.H. (1993) Uptake of rare earth elements from solution by metal oxides. Environmental Science & Technology, 27, 1796–1802.CrossRefGoogle Scholar
Lim, C.H., Jackson, M.L., Koons, R.D. & Helmke, P.A. (1980) Kaolins: sources of differences in cation exchange capacities and caesium retention. Clays and Clay Minerals, 28, 223–229.CrossRefGoogle Scholar
Mariano, A.N. (1989) Economic geology of rare earth minerals. Pp. 309–336 in: Geochemistry and Mineralogy of Rare Earth Elements (Lipin, B.R. & McKay, G.A., editors). Reviews in Mineralogy, 21. Mineralogical Society of America, Washington, D.C. Google Scholar
Miekeley, N., Coutinho de Jesús, H., Porto da Silveira, C.L., Linsalata, P. & Morse, R. (1992) Rare-earth elements in groundwaters from the Osamu Utsumi mine and Morro do Ferro analogue study sites, Poços de Caldas, Brazil. Journal of Geochemical Exploration, 45, 365–387.Google Scholar
Mongelli, G. (1995) Trace element distribution and mineralogical composition in the 2-mm size-fraction of southern apenninic shales (Italy). Mineralogy and Petrology, 53, 103–114.CrossRefGoogle Scholar
Mongelli, G., Cullers, R.L. & Muelheisen, S. (1996) Geochemistry of Late Cretaceous-Oligocenic shales from the Varicolori Formation, southern Apennines, Italy: implications for mineralogical, grain-size control and provenance. European Journal of Mineralogy, 8, 733–754.CrossRefGoogle Scholar
Nesbitt, H.W. (1979) Mobility and fractionation of rare earth elements during weathering of a granodiorite. Science, 279, 206–210.Google Scholar
Pokrovsky, O.S. & Schott, J. (2002) Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia). Chemical Geology, 190, 141–179.CrossRefGoogle Scholar
Prudencio, M.J., Figueiredo, M.O. & Cabral, J.M.P. (1989) Rare earth distribution and its correlation with clay mineralogy in the clay-sized fractions of Cretaceous and Pliocene sediments (central Portugal). Clay Minerals, 24, 67–74.CrossRefGoogle Scholar
Querol, X., Salas, R., Pardo, G. & Ardevol, L. (1992) Albian coal-bearing deposits of the Iberian Range in northeastern Spain. P. 267 in: Controls on the Distribution and Quality of Cretaceous Coals: (McCabe, P.J. & Parrish, J.T., editors). Special Paper, Geological Society of America, Boulder, Colorado.Google Scholar
Roaldset, E. (1973) Rare-earth elements in Quaternary clays of the Numedal area, southern Norway. Lithos, 6, 349–372.CrossRefGoogle Scholar
onov, A.B., Balashov, Y.A., Girin, Y.P., Bratishko, R.K. & Kazakov, G.A. (1972) Trends in rare-earth distribution in the sedimentary shell in the earth's crust. Geochemistry International, 9, 987–1016.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. US Geological Survey Professional Paper, 391-c, 31.Google Scholar
Setti, M., Marinoni, L. & López-Galindo, A. (2004) Mineralogical and geochemical characteristics (ma- jor, minor, trace elements and REE) of detrital and authigenic clay minerals in a Cenozoic sequence from Ross Sea, Antarctica. Clay Minerals, 39, 405–421.CrossRefGoogle Scholar
Slack, J.F. & Stevens, B.P.J. (1994) Clastic metasediments of the early Proterozoic Broken Hill Group, New South Wales, Australia: Geochemistry, provenance, and metallogenic significance. Geochimica et Cosmochimica Acta, 58, 3633–3652.CrossRefGoogle Scholar
Taylor, S.R. & McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, UK, 312 pp.Google Scholar
Tiepolo, M., Oberti, R. & Vannucci, R. (2002) Trace- element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chemical Geology, 191, 105–119.CrossRefGoogle Scholar
Vlasov, K.A. (1968) Geochemistry and Mineralogy of Rare Elements and Genetic Types of their Deposits. Vol III, Genetic Types of Rare-element Deposits. Israel Program for Scientific Translations, Jerusalem, 916 pp.Google Scholar
Wronkiewicz, D.J. & Condie, K.C. (1987) Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance. Geochimica et Cosmochimica Acta, 51, 2401–2416.CrossRefGoogle Scholar
Wronkiewicz, D.J. & Condie, K.C. (1989) Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: evidence for a 3.0-Ga-old continental craton. Geochimica et Cosmochimica Acta, 53, 1537–1549.CrossRefGoogle Scholar
Wronkiewicz, D.J. & Condie, K.C. (1990) Geochemistry and mineralogy of sediments from the Ventersdorp and Transvaal Supergroup, South Africa: cratonic evolution during the early Proterozoic. Geochimica et Cosmochimica Acta, 54, 343–354.CrossRefGoogle Scholar