Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T00:14:38.807Z Has data issue: false hasContentIssue false

Mineralogical and crystal-chemical characterization of the talc ore deposit of Minzanzala, Gabon

Published online by Cambridge University Press:  20 June 2019

Mathilde Poirier*
Affiliation:
Laboratoire Géosciences Environnement Toulouse UMR 5563, UPS-CNRS-IRD-CNES, ERT 1074 ‘Géomatériaux’, 14 Avenue Edouard Belin, 31400 Toulouse, France
Jean-Eudes Boulingui
Affiliation:
Laboratoire des Sciences de la Vie et de la Terre, Ecole Normale Supérieure, B.P. 17009 Libreville, Gabon Laboratoire Interdisciplinaire des Environnements Continentaux UMR CNRS7360, Université de Lorraine, 15 Avenue du Charmois, B.P. 40, 54501 Vandoeuvre-lès-Nancy, France
François Martin
Affiliation:
Laboratoire Géosciences Environnement Toulouse UMR 5563, UPS-CNRS-IRD-CNES, ERT 1074 ‘Géomatériaux’, 14 Avenue Edouard Belin, 31400 Toulouse, France
Michel Mbina Mounguengui
Affiliation:
Faculté des Sciences de l'Université des Sciences et Techniques de Masuku, USTM B.P. 943 Franceville, Gabon
Charles Nkoumbou
Affiliation:
Département des Sciences de la Terre, Université de Yaoundé I, Faculté des Sciences, B.P. 812 Yaoundé, Cameroon
Fabien Thomas
Affiliation:
Laboratoire Interdisciplinaire des Environnements Continentaux UMR CNRS7360, Université de Lorraine, 15 Avenue du Charmois, B.P. 40, 54501 Vandoeuvre-lès-Nancy, France
Michel Cathelineau
Affiliation:
Laboratoire GeoRessources UMR CNRS7359, Université de Lorraine, Rue du Doyen Roubault B.P. 40, 54501 Vandoeuvre-lès-Nancy, France
Jacques Yvon
Affiliation:
Département des Sciences de la Terre, Université de Yaoundé I, Faculté des Sciences, B.P. 812 Yaoundé, Cameroon

Abstract

This research aims to characterize the mineralogical and crystal-chemical purity of two samples of natural talc (BTT6, BTT7) from the occurrence ‘Ecole1’ in the deposit of Minzanzala, southwest Gabon. X-ray diffraction and modal-composition calculations demonstrated the presence of quartz and Al–Fe-bearing phases (kaolinite and/or chlorite and/or Al–Fe oxyhydroxides) as accessory minerals in both ores. In contrast, the chemical and spectroscopic characterization of the talc component revealed remarkable chemical purity expressed by very low Fe contents. According to these results, the talc of Minzanzala might be used as a filler in a wide range of industrial applications, such as in cosmetics, paints, polymers or ceramics.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Lawrence Warr

References

Abercrombie, H.J., Skippen, G.B. & Marshall, D.D. (1987) F–OH substitution in natural tremolite, talc, and phlogopite. Contributions to Mineralogy and Petrology, 97, 305312.Google Scholar
Alcover, J.F. & Giese, R.F. (1986) Energie de liaison des feuillets de talc, pyrophyllite, muscovite et phlogopite. Clay Minerals, 21, 159169.Google Scholar
Barani, K. & Aghazadeh, V. (2018) Removal of impurities from talc ore by leaching method. Journal of Chemical Technology and Metallurgy, 53, 296300.Google Scholar
Bellivier, F. (1977) Prospection de talc dans la région de Ndendé. Bureau de Recherches Géologiques et Minières, Orléans, France.Google Scholar
Billmeyer, F.W. & Saltzman, M. (1981) Principles of Color Technology, 2nd edn. Wiley-Interscience, New York, NY, USA.Google Scholar
Boulingui, J.-E. (2015) Inventaire des ressources en argiles du Gabon et leurs utilisations conventionnelles ou non dans les régions de Libreville de Tchibanga. Doctoral thesis. Université de Lorraine, Nancy, France, and Université de Yaoundé, Yaoundé, Cameroon.Google Scholar
Boulingui, J.E., Nkoumbou, C., Njoya, D., Thomas, F. & Yvon, J. (2015) Characterization of clays from Mezafe and Mengono (NE-Libreville, Gabon) for potential uses in fired products. Applied Clay Science, 115, 132144.Google Scholar
Boutin, P. (1985) Talc du synclinal de la Nyanga (Gabon). Synthèse des travaux fin 1984. Bureau de Recherches Géologiques et Minières, Orléans, France.Google Scholar
Boutin, P., Récoché, G., Perrin, J., Spencer, C. & Bouchot, V. (2001) Développement et mise en valeur des ressources naturelles de la province de la Nyanga (Gabon) – Programme de promotion des ressources minérales du synclinal de la Nyanga. Bureau de Recherches Géologiques et Minières, Orléans, France.Google Scholar
Brindley, G.W. & Brown, G. (1980) Crystal Structures of Clay Minerals and Their X-Ray Identification. Mineralogical Society, London, UK.Google Scholar
Brindley, G. & Gillery, F. (1956) X-ray identification of chlorite species. American Mineralogist, 41, 169186.Google Scholar
Carretero, M.I. & Pozo, M. (2010) Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients. Applied Clay Science, 47, 171181.Google Scholar
Chandra, N., Agnihotri, N. & Bhasin, S.K. (2004) Sintering characteristics of talc in the presence of phosphatic and alkali carbonate sintering activators. Ceramics International, 30, 643652.Google Scholar
Chauhan, V.S. & Bhardwaj, N.K. (2017) Efficacy of dispersion of magnesium silicate (talc) in papermaking. Arabian Journal of Chemistry, 10, S1059S1066.Google Scholar
Christidis, G.E. & Scott, P.W. (1997) Origin and colour properties of white bentonite: a case study from the Aegean Islands of Milos and Kimolos, Greece. Mineralium Deposita, 32, 271279.Google Scholar
Dumas, A. (2013) Elaboration de nouveaux procédés de synthèse et caractérisation de talcs sub-microniques: de la recherche fondamentale vers des applications industrielles. PhD thesis. Université Toulouse III – Paul Sabatier, Toulouse, France.Google Scholar
Dumas, A., Martin, F., Le Roux, C., Micoud, P., Petit, S., Ferrage, E., Brendlé, J., Grauby, O. & Greenhill-Hooper, M. (2013) Phyllosilicates synthesis: a way of accessing edges contributions in NMR and FTIR spectroscopies. Example of synthetic talc. Physics and Chemistry of Minerals, 40, 361373.Google Scholar
Dumas, A., Martin, F., Ngo Ke, T., Nguyen Van, H., Nguyen Viet, D., Nguyen Tat, V., Kieu Quy, N., Micoud, P. & de Parseval, P. (2015) The crystal-chemistry of Vietnamese talcs from the Thanh Son district (Phu Tho province, Vietnam). Clay Minerals, 50, 607617.Google Scholar
Dumas, A., Claverie, M., Slostowski, C., Aubert, G., Careme, C., Le Roux, C., Micoud, P., Martin, F. & Aymonier, C. (2016) Fast-geomimicking using chemistry in supercritical water. Angewandte Chemie International Edition, 55, 98689871.Google Scholar
Ersoy, B., Dikmen, S., Yildiz, A., Gören, R. & Elitok, Ö. (2013) Mineralogical and physicochemical properties of talc from Emirdağ, Afyonkarahisar, Turkey. Turkish Journal of Earth Sciences, 22, 632644.Google Scholar
Fiume, M.M., Boyer, I., Bergfeld, W.F., Belsito, D.V., Hill, R.A., Klaassen, C.D., Liebler, D.C., Marks, J.G., Shank, R.C., Slaga, T.J., Snyder, P.W. & Andersen, F.A. (2015) Safety assessment of talc as used in cosmetics. International Journal of Toxicology, 34, 66S129S.Google Scholar
Kocic, N., Kretschmer, K., Bastian, M. & Heidemeyer, P. (2012) The influence of talc as a nucleation agent on the nonisothermal crystallization and morphology of isotactic polypropylene: the application of the Lauritzen–Hoffmann, Avrami, and Ozawa theories. Journal of Applied Polymer Science, 126, 12071217.Google Scholar
Lippmaa, E., Mägi, M., Samoson, A., Engelhardt, G. & Grimmer, A.R. (1980) Structural studies of silicates by solid-state high-resolution silicon-29 NMR. Journal of the American Chemical Society, 102, 48894893.Google Scholar
Lissoulour, X. & Barras, X. (1948) Prospection de la région de la Nyanga et de la basse Nyanga Group VII. Document COGEMA-CEA 48 GAB RSP-3. Commissariat à l'Energie Atomique, Paris, France.Google Scholar
López-Galindo, A., Viseras, C. & Cerezo, P. (2007) Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Applied Clay Science, 36, 5163.Google Scholar
Mallet, S., Delord, P., Juin, H. & Lessire, M. (2005) Effect of feed in talc supplementation on broiler performance. Animal Research, 54, 485492.Google Scholar
Martin, F., Micoud, P., Delmotte, L., Marichal, C., Le Dred, R., de Parseval, P., Mari, A., Fortuné, J.P., Salvi, S. & Béziat, D. (1999) The structural formula of talc from the Trimouns deposit, Pyrénées, France. The Canadian Mineralogist, 37, 9971006.Google Scholar
Martin, F., Ferrage, E., Petit, S., de Parseval, P., Delmotte, L., Ferret, J., Arseguel, D. & Salvi, S. (2006) Fine-probing the crystal-chemistry of talc by MAS-NMR spectroscopy. European Journal of Mineralogy, 18, 641651.Google Scholar
Martini, J. & Makanga, J.F. (2001) Carte métallogénique de la République Gabonaise. Council for Geoscience, Pretoria, South Africa.Google Scholar
Maskell, N.A., Lee, Y.C.G., Gleeson, F.V., Hedley, E.L., Pengelly, G. & Davies, R.J.O. (2004) Randomized trials describing lung inflammation after pleurodesis with talc of varying particle size. American Journal of Respiratory and Critical Care Medicine, 170, 377382.Google Scholar
Massiot, D., Dion, P., Alcover, J.F. & Bergaya, F. (1995) 27Al and 29Si NMR study of kaolinite thermal decomposition by controlled rate thermal analysis. Journal of the American Ceramic Society, 78, 29402944.Google Scholar
Müller, A., Breiter, K., Seltmann, R. & Pécskay, Z. (2005) Quartz and feldspar zoning in the eastern Erzgebirge volcano–plutonic complex (Germany, Czech Republic): evidence of multiple magma mixing. Lithos, 80, 201227.Google Scholar
Njopwouo, D. (1984) Minéralogie et physico-chimie des argiles de Bomkoul et de Balengou (Cameroun). Utilisation dans la polymérisation du styrène et dans le renforcement du caoutchouc naturel. Doctoral thesis, Université de Yaoundé, Yaoundé, Cameroon.Google Scholar
Njoya, A., Nkoumbou, C., Grosbois, C., Njopwouo, D., Njoya, D., Courtinnomade, A., Yvon, J. & Martin, F. (2006) Genesis of Mayouom kaolin deposit (western Cameroon). Applied Clay Science, 32, 125140.Google Scholar
Nkoumbou, C., Njopwouo, D., Villiéras, F., Njoya, A., Yonta Ngouné, C., Ngo Ndjock, L., Tchoua, F.M. & Yvon, J. (2006) Talc indices from Boumnyebel (central Cameroon), physico-chemical characteristics and geochemistry. Journal of African Earth Sciences, 45, 6173.Google Scholar
Petit, S., Madejová, J., Decarreau, A. & Martin, F. (1999) Characterization of octahedral substitutions in kaolinites using near infrared spectroscopy. Clays and Clay Minerals, 47, 103108.Google Scholar
Petit, S., Martin, F., Wiewiora, A., de Parseval, P. & Decarreau, A. (2004) Crystal-chemistry of talc: a near infrared (NIR) spectroscopy study. American Mineralogist, 89, 319326.Google Scholar
Ross, M. & Smith, W.L. (1968) Triclinic talc and associated amphiboles from Gouverneur Mining District, New York. American Mineralogist, 53, 751769.Google Scholar
Scherrer, P. (1918) Bestimmung der grösse und der inneren struktur von kolloidteilchen mittels Röntgenstrahlen, Nachr. Gesellschaft für Wissenschaftliche zu Göttingen, 26, 98100.Google Scholar
Tothill, I.E., Best, D.J. & Seal, K.J. (1993) Studies on the inhibitory effect of paint raw materials on cellulolytic enzymes present in waterborne paint. International Biodeterioration and Biodegradation, 32, 233242.Google Scholar
Viallat, J.R. & Boutin, C. (1998) Épanchements pleuraux malins: le recours précoce au talcage. La Revue de Médecine Interne, 19, 811818.Google Scholar
Yang, M., Ye, M., Han, H., Ren, G., Han, L. & Zhang, Z. (2018) Near-infrared spectroscopic study of chlorite minerals. Journal of Spectroscopy, 2018, 6958260.Google Scholar
Yousfi, M., Livi, S., Dumas, A., Le Roux, C., Crépin-Leblond, J., Greenhill-Hooper, M. & Duchet-Rumeau, J. (2013) Use of new synthetic talc as reinforcing nanofillers for polypropylene and polyamide 6 systems: thermal and mechanical properties. Journal of Colloid and Interface Science, 403, 2942.Google Scholar
Yvon, J., Baudracco, J., Cases, J.M. & Weiss, J. (1990) Eléments de minéralogie quantitative en micro-analyse des argiles. Pp. 473489 in: Matériaux Argileux, Structures, Propriétés et Applications (Decarreau, A., editor). Société Française de Minéralogie et de Cristallographie–Groupe Français des Argiles, Paris, France.Google Scholar
Zazenski, R., Ashton, W.H., Briggs, D., Chudkowski, M., Kelse, J.W., MacEachern, L., McCarthy, E.F., Nordhauser, M.A., Roddy, M.T., Teetsel, N.M., Wells, A.B. & Gettings, S.D. (1995) Talc: occurrence, characterization, and consumer applications. Regulatory Toxicology and Pharmacology, 21, 218229.Google Scholar
Zazzi, Å., Hirsch, T.K., Leonova, E., Kaikkonen, A., Grins, J., Annersten, H. & Edén, M. (2006) Structural investigations of natural and synthetic chlorite minerals by X-ray diffraction, Mössbauer spectroscopy and solid-state nuclear magnetic resonance. Clays and Clay Minerals, 54, 252265.Google Scholar
Zhang, M., Hui, Q., Lou, X.-J., Redfern, S.A.T., Salje, E.K.H. & Tarantino, S. (2006) Dehydroxylation, proton migration, and structural changes in heated talc: an infrared spectroscopic study. American Mineralogist, 91, 816825.Google Scholar