Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T14:39:30.005Z Has data issue: false hasContentIssue false

Micro-scale experimental investigation of the swelling anisotropy of the Callovo-Oxfordian argillaceous rock

Published online by Cambridge University Press:  09 July 2018

L. L. Wang*
Affiliation:
Laboratoire de Mécanique des Solides (UMR 7649), École Polytechnique, 91128 Palaiseau Cedex, France
M. Bornert
Affiliation:
Laboratoire Navier (UMR 8205), CNRS, ENPC, IFSTTAR, Université Paris-Est, 77455 Marne-la-Vallée Cedex, France
S. Chanchole
Affiliation:
Laboratoire de Mécanique des Solides (UMR 7649), École Polytechnique, 91128 Palaiseau Cedex, France
D. S. Yang
Affiliation:
State Laboratory of Geomechanics and Geotechnical Engineering, IRSM, Chinese Academy of Science, 430071 Wuhan, China
E. Héripre
Affiliation:
Laboratoire de Mécanique des Solides (UMR 7649), École Polytechnique, 91128 Palaiseau Cedex, France
A. Tanguy
Affiliation:
Laboratoire de Mécanique des Solides (UMR 7649), École Polytechnique, 91128 Palaiseau Cedex, France
D. Caldemaison
Affiliation:
Laboratoire de Mécanique des Solides (UMR 7649), École Polytechnique, 91128 Palaiseau Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An experimental study of the swelling anisotropy of the Callovo-Oxfordian argillaceous rock under hydration is presented. The investigation, which combines environmental scanning electron microscopy (ESEM) and digital image correlation techniques, has been carried out at the micrometric scale of the composite microstructure of the rock. Specimens were hydrated in the ESEM over a wide range of relative humidity and observations conducted on two planes: plane 1 parallel to the bedding plane, and plane 2 perpendicular to it. The observations reveal that the local swelling (which can be quantified at a local gauge length of about 5 μm) is strongly anisotropic in both planes. The global swelling, measured over areas of about 500 μm in width, is also clearly anisotropic in plane 2 (with major swelling direction normal to the bedding plane), but not in plane 1. The global isotropy in plane 1 arises from the uniform distribution of the orientation of anisotropic local strains, while the anisotropic swelling in plane 2 is due to a preferred local orientation.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2013 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

References

Allais, L., Bornert, M., Bretheau, T. & Caldemaison, D. (1994) Experimental characterization of the local strain field in a heterogeneous elastoplastic material. Acta Metallurgica et Materialia, 42, 3865–3880.10.1016/0956-7151(94)90452-9Google Scholar
ANDRA, (2005) Référentiel du Site Meuse/Haute-Marne: Vol. 2.Google Scholar
Bornert, M., Orteu, J.J. & Roux, S. (2011) Corrélation d’images. Pp. 175–208 in: Mesures de champs et identification en mécanique des solides (Grédiac, M. & F. Hild, editors). Hermès Science.Google Scholar
Ortega, J.A., Ulm, F.-J. & Abousleiman, Y. (2007) The effect of the nanogranular nature of shale on their poroelastic behavior. Acta Geotechnica, 2, 155–182.10.1007/s11440-007-0038-8Google Scholar
Pham, Q.T., Valès, F., Malinsky, L., Nguyen, M.D. & Gharbi, H. (2007) Effects of desaturation-resaturation on mudstone. Physics and Chemistry of the Earth, 32, 646–655.Google Scholar
Robinet, J.C., Sardini, P., Coelho, D., Parneix, J.C., Prêt, D., Sammartino, S., Boller, E. & Altmann, S. (2012) Effects of mineral distribution at mesoscopic scale on solute diffusion in a clay-rich rock: Example of the Callovo-Oxfordian mudstone (Bure, France). Water Resources Research, 48, doi.org/10.1029/ 2011WR011352.CrossRefGoogle Scholar
Sammartino, S., Bouchet, A., Prêt, D., Parneix, J.-C. & Tevissen, E. (2003) Spatial distribution of porosity and minerals in clay rocks from the Callovo- Oxfordian formation (Meuse/Haute-Marne, Eastern France) implications on ionic species diffusion and rock sorption capability. Applied Clay Science, 23, 157–166.10.1016/S0169-1317(03)00098-XGoogle Scholar
Sayers, C.M. (1994) The elastic anisotropy of shales. Journal of Geophysical Research, 99, 767–774.10.1029/93JB02579CrossRefGoogle Scholar
Sutton, M.A., Orteu, J.-J. & Schreier, H.W. (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer.Google Scholar
Valès, F. (2008) Modes de déformation et d’endommagement de roches argileuses profondes sous sollicitations hydro-mécaniques. PhD thesis, Ecole Polytechnique, Palaiseau, France.Google Scholar
Wang, L.L. (2012) Micromechanical experimental investigation and modelling of strain and damage of argillaceous rocks under combined hydraulic and mechanical loads. PhD thesis, Ecole Polytechnique, Palaiseau, France.Google Scholar
Wenk, H.R., Voltolini, M., Mazurek, M., Van Loon, L.R. & Vinsot, A. (2008) Preferred orientations and anisotropy in shales: Callovo-Oxfordian shale (France) and Opalinus Clay (Switzerland). Clays and Clay Minerals, 56, 285–306.10.1346/CCMN.2008.0560301Google Scholar
Yang, D.S., Bornert, M., Chanchole, S., Gharbi, H., Valli, P. & Gatmiri, B. (2012) Dependence of elastic properties of argillaceous rocks on moisture content investigated with optical full-field strain measurement techniques. International Journal of Rock Mechanics & Mining Sciences, 53, 45–55.Google Scholar