Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T23:52:43.209Z Has data issue: false hasContentIssue false

Linking the redox cycles of Fe oxides and Fe-rich clay minerals: an example from a palaeosol of the Upper Freshwater Molasse

Published online by Cambridge University Press:  09 July 2018

H. Stanjek*
Affiliation:
Clay and Interface Mineralogy, RWTH Aachen University, Wüllnerstrasse 2, 52056 Aachen, Germany
C. Marchel
Affiliation:
Clay and Interface Mineralogy, RWTH Aachen University, Wüllnerstrasse 2, 52056 Aachen, Germany

Abstract

A profile within the Upper Freshwater Molasse (OSM) of eastern Switzerland was sampled. Particle-size analyses, bulk chemical analyses, cation exchange capacities and Fe fractions (oxalate- and dithionite-citrate-bicarbonate-soluble Fe, total Fe) were measured. The mineralogical composition was determined by X-ray diffraction and quantified with Rietveld analysis. The layer charge of selected fine-clay samples was determined with the alkylammonium method using chain nc = 12. The profile could be divided into a lower sequence (I) and an upper sequence (II) by a hiatus. Chemical data, particle-size distributions and calcite contents indicated that soil formation was essentially restricted to wetting-drying cycles associated with redox cycles evident from Feo/Fed and Fed/Fet ratios. A significant correlation between the d060 values of the dioctahedral smectite-illite mixed-layer phases and Feo/Fed was interpreted as the influence of microbial Fe3+ reduction, which affected both the Fe oxides and Fe-rich clay minerals. This is the first evidence that the Fe dynamics of both mineral groups may be linked. The amount of illitization also correlated with Feo/Fed, but only in the upper part of the profile. This indicates that wetting-drying cycles were necessary for the illitization process.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergmann, J. & Kleeberg, R. (1998) Rietveld analysis of disordered layer silicates. Materials Science Forum, 278-281, 300305.CrossRefGoogle Scholar
Blume, H.-P. & Schwertmann, U. (1969) Genetic evaluation of the profile distribution of aluminium, Fe and manganese oxides. Soil Science Society of America Proceedings, 33, 438444.CrossRefGoogle Scholar
Brigatti, M.F. (1983) Relationships between composition and structure in Fe-rich smectites. Clay Minerals, 18, 177186.CrossRefGoogle Scholar
Brindley, G. (1980) Order-disorder in clay mineral structures. Pp. 125195 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G. & Brown, G., editors). Mineralogical Society Monograph 5, Mineralogical Society, London.CrossRefGoogle Scholar
Chen, S., Low, P.F. & Roth, C.B. (1987) Relation between potassium fixation and the oxidation state of octahedral Fe. Soil Science Society of America Journal, 51, 8286.CrossRefGoogle Scholar
Cornell, R. & Schwertmann, U. (2003) The Iron Oxides. VCH, Weinheim, Germany.CrossRefGoogle Scholar
Cuadros, J. (2002) Structural insights from the study of Cs-exchanged smectites submitted to wetting-anddrying cycles. Clay Minerals, 37, 473486.CrossRefGoogle Scholar
Dong, H., Kukkadapu, R.K., Fredrickson, J.K., Zachara, J.M., Kennedy, D.W. & Kostandarithes, H.M. (2003) Microbial reduction of structural Fe(III) in illite and goethite. Environmental Science & Technology, 37, 12681276.CrossRefGoogle Scholar
Eberl, D.D., Srodon, J. & Northrop, R. (1986) Potassium fixation in smectite by wetting and drying. Pp. 296326 in: ACS Symposium Series (Davis, J. & Hayes, K.F., editors), volume 323. American Chemical Society, Washington.Google Scholar
Eslinger, E., Highsmith, P., Albers, D. & DeMayo, B. (1979) Role of Fe in the conversion of smectite to illite in bentonites of the Disturbed Belt, Montana. Clays and Clay Minerals, 27, 327338.CrossRefGoogle Scholar
Favre, F., Tessier, D., Abdelmoula, M., Genin, J.-M.R., Gates, W. & Boivin, P. (2002) Fe reduction and changes in cation exchange capacity in intermittently waterlogged soil. European Journal of Soil Science, 53, 175183.CrossRefGoogle Scholar
Fischer, W. & Pfanneberg, T. (1984) An improved method for testing the rate of Fe(III) oxide reduction by bacteria. Zentralblatt für Mikrobiologie, 139, 163172.CrossRefGoogle Scholar
Furukawa, Y. & O’Reilly, S.E. (2007) Rapid precipitation of amorphous silica in experimental systems with nontronite (NAu-1) and Shewanella oneidensis MR-1. Geochimica et Cosmochimica Acta, 71, 363377.CrossRefGoogle Scholar
Gates, W., Wilkinson, H. & Stucki, J. (1993) Swelling properties of microbially reduced ferruginous smectite. Clays and Clay Minerals, 41, 360364.CrossRefGoogle Scholar
Güven, N. (1988) Smectites. Pp. 497559 in: Hydrous Phyllosilicates (Bailey, S., editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington D.C. CrossRefGoogle Scholar
Hansel, C.M., Benner, S.G., Neiss, J., Dohnalkova, A., Kukkadapu, R.K. & Fendorf, S. (2003) Secondary mineralization pathways induced by dissimilatory Fe reduction of ferrihydrite under advective flow. Geochimica et Cosmochimica Acta, 67, 29772992.CrossRefGoogle Scholar
Hofmann, F. (1956) Petrographic and mineralogic investigations of the bentonites of Switzerland and Southwest Germany. Eclogae Geologicae Helvetiae, 51, 6571.Google Scholar
Hofmann, F., Büchi, U., Iberg, R. & Peters, T. (1975) Vorkommen, petrographische, tonmineralogische und technologische Eigenschaften von Bentoniten im schweizerischen Molassebecken. Beiträge zur Geologie der Schweiz, Geotechnische Serie, 54, 613.Google Scholar
Hower, J., Eslinger, E., Hower, M. & Perry, E. (1976) Mechanisms of burial metamorphism of argillaceous sediments: mineralogical and chemical evidence. Geological Society of America Bulletin, 87, 725737.2.0.CO;2>CrossRefGoogle Scholar
Huang, W., Longo, J.M. & Pevear, D. (1993) An experimentally derived kinetic-model for smectiteto- illite conversion and its use as a geothermometer. Clays and Clay Minerals, 41, 162177.CrossRefGoogle Scholar
Huggett, J. & Cuadros, J. (2005) Low-temperature illitization of smectite in the late Eocene and early Oligocene of the Isle of Wight (Hampshire basin), UK. American Mineralogist, 90, 11921202.CrossRefGoogle Scholar
Khaled, E.M. & Stucki, J.W. (1991) Effects of Fe oxidation state on cation fixation in smectites. Soil Science Society of America Journal, 55, 550554.CrossRefGoogle Scholar
Kim, J., Dong H, Seabaugh, J., Newell, S.W. & Eberl, D.D. (2004) Role of microbes in the smectite-to-illite reaction. Science, 303, 830832.CrossRefGoogle ScholarPubMed
Kim, J.-W., Furukawa, Y., Daulton, T.L., Lavoie, D. & Newell, S.W. (2003) Characterization of microbially Fe(III)-reduced nontronite: environmental cell-transmission electron microscopy. Clays and Clay Minerals, 51, 382389.CrossRefGoogle Scholar
Komadel, P., Stucki, J.W. & Wilkinson, H. (1987) Reduction of structural Fe in smectites by microorganisms. Pp. 322324 in: The Sixth Meeting of the European Clay Groups, Madrid (Galan, E., editor).Google Scholar
Köster, H.M., Ehrlicher, U., Gilg H , Jordan, R., Murad, E. & Omnich K (1999) Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites. Clay Minerals, 34, 579599.CrossRefGoogle Scholar
Kostka, J., Stucki, J., Nealson, K. & Wu, J. (1996) Reduction of structural Fe(III) in smectite by a pure culture of Shewanella putrefaciens strain MR1. Clays and Clay Minerals, 44, 522529.CrossRefGoogle Scholar
Kostka, J., Haefele, E., Viehweger, R. & Stucki, J. (1999) Respiration and dissolution of Fe(III)-containing clay minerals by bacteria. Environmental Science & Technology, 33, 31273133.CrossRefGoogle Scholar
Lovley, D. (1987) Organic matter mineralization with the reduction of ferric iron: a review. Geomicrobiology Journal, 5, 375399.CrossRefGoogle Scholar
Lovley, D. (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiological Reviews, 55, 259287.CrossRefGoogle ScholarPubMed
Lovley, D. & Woodward, J. (1996) Mechanisms for chelator stimulation of microbial Fe(III)-oxide reduction. Chemical Geology, 132, 1924.CrossRefGoogle Scholar
Macedo, J. & Bryant, R. (1989) Preferential microbial reduction of hematite over goethite in a Brazilian Oxisol. Soil Science Society of America Journal, 53, 11141118.Google Scholar
Mamy, J. & Gaultier, J.P. (1975) Étude de l’évolution de l’ordre cristallin dans la montmorilllonite en relation avec la diminution d’échangeabilité du potassium. Proceedings of the International Clay Conference, 149-155.Google Scholar
Masuda, H., Peacor, D.R. & Dong, H. (2001) Transmission electron microscopy study of conversion of smectite to illite in mudstones of the Nankai trough: contrast with coeval bentonites. Clays and Clay Minerals, 49, 109118.CrossRefGoogle Scholar
Mehra, O. & Jackson, M. (1960) Iron oxide removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317327.CrossRefGoogle Scholar
Meier, L. & Kahr, G. (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine. Clays and Clay Minerals, 47, 386388.CrossRefGoogle Scholar
Merriman, R.J. (2005) Clay minerals and sedimentary basin history. European Journal of Mineralogy, 17, 720.CrossRefGoogle Scholar
Miall, A.D. (1996) The Geology of Fluvial Deposits (Sedimentary Facies, Basin Analysis and Petroleum Geology). Springer-Verlag, Heidelberg. Germany.Google Scholar
Moore, D.M. & Reynolds, R.C. (1997) X-ray Diffraction and the Identification and Analyses of Clay Minerals. 2 nd edition. Oxford University Press, New York.Google Scholar
Murad, E. (1988) The Mössbauer spectrum of wellcrystallized ferrihydrite. Journal of Magnetism and Magnetic Materials, 74, 153157.CrossRefGoogle Scholar
Murad, E. & Fischer, W. (1988) The geobiochemical cycle of iron. Pp. 118 in: Iron in Soils and Clay Minerals (Stucki, J., Goodman, B.A. & Schwertmann, U., editors). NATO ASI series. Series, C. Reidel Publishing, Dordrecht, The Netherlands.Google Scholar
Murad, E., Bigham, J., Bowen, L. & Schwertmann, U. (1990) Magnetic properties of iron oxides produced by bacterial oxidation of Fe2+ under acid conditions. Hyperfine Interactions, 58, 23732376.CrossRefGoogle Scholar
Olis, A., Malla, P. & Douglas, L. (1990) The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion. Clay Minerals, 25, 3950.CrossRefGoogle Scholar
Olk, D.C., Gassman, K.G. & Carlson, R.M. (1995) Kinetics of potassium fixation in vermiculitic soils under different moisture regimes. Soil Science Society of America Journal, 59, 423429.CrossRefGoogle Scholar
O’Reilly, S.E., Furukawa, Y. & Newell, S. (2006) Dissolution and microbial Fe(III) reduction of nontronite (NAu-1). Chemical Geology, 235, 111.CrossRefGoogle Scholar
Ottow, J. & Glathe, H. (1971) Isolation and identification of iron-reducing bacteria from gley soils. Soil Biology & Biochemistry, 3, 4355.CrossRefGoogle Scholar
Petit, S., Prot, T., Decarreau, A., Mosser, C. & Toledo-Groke, M.C. (1992) Crystallochemical study of a population of particles in smectites from a lateritic weathering profile. Clays and Clay Minerals, 40, 436445.CrossRefGoogle Scholar
Reynolds, R.J. (1985) Newmod, a computer program for the calculation of one-dimensional diffraction patterns of mixed-layered clays. Published by the author, 8 Brook Drive, Hannover, New Hampshire, USA.Google Scholar
Roden, E. & Zachara, J. (1996) Microbial reduction of crystalline Fe(III) oxides: influence of oxide surface area and potential for cell growth. Environmental Science & Technology, 30, 16181628.CrossRefGoogle Scholar
Rozenson, I. & Heller-Kallai, L. (1976) Reduction and oxidation of Fe3+ in dioctahedral smectite. I. Reduction with hydrazine and dithionite. Clays and Clay Minerals, 24, 271282.CrossRefGoogle Scholar
Scheinost, A. & Schwertmann, U. (1995) Predicting phosphate adsorption/desorption in a soilscape. Soil Science Society of America Journal, 59, 15751580.CrossRefGoogle Scholar
Scheinost, A. & Schwertmann, U. (1999) Color identification of iron oxides and hydroxysulfates: use and limitations. Soil Science Society of America Journal, 63, 14631471.CrossRefGoogle Scholar
Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch photochemische Extraktion mit saurer Ammoniumoxalat-Lösung. Zeitschrift fur Pflanzenernahrung und Bodenkunde, 105, 194202.CrossRefGoogle Scholar
Schwertmann, U., Schulze, D. & Murad, E. (1982) Identification of ferrihydrite in soils by dissolution kinetics, differential X-ray diffraction and Mössbauer spectroscopy. Soil Science Society of America Journal, 46, 869875.CrossRefGoogle Scholar
Shen, S. & Stucki, J.W. (1994) Effects of iron oxidation state on the fate and behavior of potassium in soils. Pp. 173185 in: Soil Testing: Prospects for Improving Nutrient Recommendations (Havlin, J. & Jacobsen, J., editors). SSSA Special Publication 40. Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar
Stanjek, H. & Murad, E. (1994) Comparison of pedogenic and sedimentary greigite by X-ray diffraction and Mössbauer spectroscopy. Clays and Clay Minerals, 42, 451454.CrossRefGoogle Scholar
Stucki, J. (2006) Properties and behaviour of iron in clay minerals. Pp. 423475 in: Handbook of Clay Science (Bergaya, F., Theng, B. & Lagaly, G., editors). Elsevier, Amsterdam.CrossRefGoogle Scholar
Stucki, J., Golde, D. & Roth, C. (1984) The preparation and handling of dithionite-reduced smectite suspensions. Clays and Clay Minerals, 32, 191197.CrossRefGoogle Scholar
Stucki, J.W. & Kostka, J.E. (2006) Microbial reduction of iron in smectite. Comptes Rendues Geoscience, 338, 468475.CrossRefGoogle Scholar
Stucki, J.W., Komadel, P. & Wilkinson, H. (1987) Microbial reduction of structural Fe(III) in smectites. Soil Science Society of America Journal, 51, 16631665.CrossRefGoogle Scholar
Šucha, V. & Siránová, V. (1991) Ammonium and potassium fixation in smectite by wetting and drying. Clays and Clay Minerals, 39, 556559.CrossRefGoogle Scholar
Torrent, J. & Barron, V. (editors) (1993) Laboratory Measurements of Soil Color: Theory and Practice, Soil Color. Special Publication 31, Soil Science Society of America, Madison, Wisconsin, USA.Google Scholar
Tributh, H. & Lagaly, G. (1986a) Aufbereitung und Identifizierung von Boden- und Lager-stättentonen. GIT Fachzeitschrift fur das Laboratorium, 30, 524529.Google Scholar
Tributh, H. & Lagaly, G. (1986b) Aufbereitung und Identifizierung von Boden- und Lager-stättentonen. GIT Fachzeitschrift fur das Laboratorium, 30, 771776.Google Scholar
Tröger, W. (1969) Optische Bestimmung der gesteinsbildenden Minerale. Teil II, Textband. Schweizerbart’sche Verlagsbuchhandlung.Google Scholar
Ufer, K., Roth, G., Kleeberg, R., Stanjek, H., Dohrmann, R. & Bergmann, J. (2004) Description of X-ray powder patterns of turbostatically disordered layer structures with a Rietveld compatible approach. Zeitschrift fur Kristallographie, 219, 519527.Google Scholar
Urrutia, M., Roden, E., Fredrickson, J. & Zachara, J. (1998) Microbial and surface chemistry controls on reduction of synthetic Fe(III) oxide minerals by the dissimilatory Fe-reducing bacteriu. Shewanella alga. Geomicrobiology Journal, 15, 269291.CrossRefGoogle Scholar
Wahid, P. & Kamalam, N. (1993) Reductive dissolution of crystalline and amorphous Fe(III) oxides by micro-organisms in submerged soil. Biology and Fertility of Soils, 15, 144148.CrossRefGoogle Scholar
Zhang, G., Dong, H., Kim, J. & Eberl, D.D. (2007a) Microbial reduction of structural Fe3+ in nontronite by thermophilic bacterium and its role in promoting the smectite to illite reaction. American Mineralogist, 92, 14151419.Google Scholar
Zhang, G., Kim, J., Dong, H. & Sommer, A.J. (2007b) Microbial effects in promoting the smectite to illite reaction: role of organic matter intercalated in the interlayer. American Mineralogist, 92, 14011410.CrossRefGoogle Scholar