Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T13:43:37.344Z Has data issue: false hasContentIssue false

Integration of Fe in natural and synthetic Al-pyrophyllites: an infrared spectroscopic study

Published online by Cambridge University Press:  09 July 2018

S. Lantenois*
Affiliation:
Institut des Sciences de la Terre d'Orléans (ISTO), CNRS – Université d'Orléans, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France Institut Charles Gerhardt (ICG-AIME), CNRS – Université Montpellier 2, Bât 15 – Case courrier 015, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
J.-M. Beny
Affiliation:
Institut des Sciences de la Terre d'Orléans (ISTO), CNRS – Université d'Orléans, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France
F. Muller
Affiliation:
Institut des Sciences de la Terre d'Orléans (ISTO), CNRS – Université d'Orléans, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France
R. Champallier
Affiliation:
Institut des Sciences de la Terre d'Orléans (ISTO), CNRS – Université d'Orléans, 1A rue de la Férollerie, 45071 Orléans Cedex 2, France

Abstract

Numerous studies focus on the relationships between chemical composition and OH-band positions in the infrared (IR) spectra of micaceous minerals. These studies are based on the coexistence, in dioctahedral micas or smectites, of several cationic pairs around the hydroxyl group which each produce a characteristic band in the IR spectrum. The aim of this work is to obtain the wavenumber values of the IR OH vibration bands of the (Al-Fe3+)-OH and (Fe3+-Fe3+)-OH local cationic environments of ‘pyrophyllite type’ in order to prove, disprove or modify a model of dioctahedral phyllosilicate OH-stretching band decomposition. Natural samples are characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Raman spectroscopies and electron microprobe; the hydrothermal synthesis products are also analysed by powder XRD and FTIR after inductively coupled plasma measurements to obtain the chemical compositions of starting gel phases. Natural samples contain some impurities which were eliminated after acid treatment; nevertheless, a small Fe content is found in the pyrophyllite structure. The amount of Fe which is incorporated within the pyrophyllite structure is much more important for the synthetic samples than for the natural ones. The IR OH bands were clearly observed in both natural and synthetic pyrophyllites and assigned to hydroxides bonded to (Al-Al), (Al-Fe) and (Fe-Fe) cationic pairs. During this study, three samples were analysed by DTG to check the cis- or trans-vacant character of the layers and to determine the influence of this structural character on the OH-stretching band position in IR spectroscopy.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, S.W. (1988) Hydrous Phyllosilicates. Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C., U.S.A. Google Scholar
Besson, G. & Drits, V.A. (1997a) Refined relationships between chemical composition of dioctahedral fine-grained micaceous minerals and their infrared spectra within the OH stretching region. Part I: identification of the OH stretching bands. Clays and Clay Minerals, 45, 158169.Google Scholar
Besson, G. & Drits, V.A. (1997b) Refined relationships between chemical composition of dioctahedral fine-grained micaceous minerals and their infrared spectra within the OH stretching region. Part II: The main factors affecting OH vibrations and quantitative analysis. Clays and Clay Minerals. 45, 170183.CrossRefGoogle Scholar
Brindley, G.W. (1976) Thermal transformations of clays and layer silicate. Pp. 119120 in: Proceedings of the International Clay Conference 1975, (Fripiat, J., editor), Applied Publishing Ltd., Wilmette, Illinois, USA.Google Scholar
Chukhrov, F.V., Zvyagin, B.B., Drits, V.A., Gorshkov, A.I., Ermilova, L.P., Goilo, E.A. & Rudnitskaya, E.S. (1979) The ferric analogue of pyrophyllite and related phases. Pp. 5564 in: Proceedings of the International Clay Conference 1978, Oxford.Google Scholar
Coey, J.M.D., Chukhrov, F.V. & Zvyagin, B.B. (1984) Cation distribution, Mössbauer spectra, and magnetic properties of ferripyrophyllite. Clays and Clay Minerals. 32, 198204.Google Scholar
Decarreau, A., Bonnin, D., Badaut-Trauth, D., Couty, R. & Kaiser, P. (1987) Synthesis and crystallogenesis of ferric smectite by evolution of Si-Fe coprecipitates in oxidizing conditions. Clays and Clay Minerals, 22, 207223.Google Scholar
Drits, V.A., Besson, G. & Muller, F. (1995) An improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicates. Clays and Clay Minerals, 43, 718731.Google Scholar
Drits, V.A., Dainyak, L.G., Muller, F., Besson, G. & Manceau, A. (1997) Isomorphous cation distribution in celadonites, glauconites, and Fe-illites determined by infrared, Mössbauer and EXAFS spectroscopies. Clay Minerals, 32, 153179.CrossRefGoogle Scholar
Eberl, D.D. (1979) Synthesis of pyrophyllite polytypes and mixed layers. American Mineralogist, 64, 10911096.Google Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals (Farmer, V.C., editor). Monograph 4, Mineralogical Society, London.CrossRefGoogle Scholar
Farmer, V.C. & Russell, J.D. (1964) The infrared spectra of layer silicates. Spectrochimica Acta, 20, 11491173.CrossRefGoogle Scholar
Fialips, C.I., Huo, D., Yan, L., Wu, J. & Stucki, J.W. (2002a) Effect of Fe oxidation state on the IR spectra of Garfield nontronite. American Mineralogist, 87, 630641.Google Scholar
Fialips, C.I., Huo, D., Yan, L., Wu, J. & Stucki, J.W. (2002b) Infrared study of reduced and reduced-reoxidized ferruginous smectite. Clays and Clay Minerals, 50, 455469.Google Scholar
Gates, W.P. (2004) Infrared spectroscopy and the chemistry of dioctahedral smectite. Pp. 125168 in: The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides (Kloprogge, J.T., editor). CMS Workshop Lectures, 13, The Clay Minerals Society, Aurora, Colorado.Google Scholar
Grauby, O. (1993) Nature et étendue des solutions solides octaédriques argileuses. Approche par synthèse minérale. PhD thesis, Poitiers University, France.Google Scholar
Grauby, O., Petit, S., Decarreau, A. & Baronnet, A. (1993) The beidellite-saponite series: an experimental approach. European Journal of Mineralogy, 5, 623635.Google Scholar
Grim, R.E. (1968) Clay Mineralogy. International Series in the Earth and Planetary Sciences, McGraw-Hill Book Company, New York.Google Scholar
Guggenheim, S. (1990) The dynamics of thermal decomposition in aluminous dioctahedral 2:1 layer silicates: a crystal chemical model. Pp. 99107 in: Proceedings of the 9t International Clay Conference, 2, (Farmer, V.C. & Tardy, Y. editors), Strasbourg, France.Google Scholar
Hamilton, D.L. & Henderson, C.M.B. (1968) The preparation of silicate compositions by a gelling method. Mineralogical Magazine, 36, 832838.Google Scholar
Heller-Kallai, L., Farmer, V.C., Mackenzie, R.C., Mitchell, B.D. & Taylor, H.F.W. (1962) The dehydroxylation and rehydroxylation of triphormic dioctahedral clay minerals. Clay Mineral Bulletin, 5, 5672.Google Scholar
Kloprogge, J.T. (2006) Spectroscopic studies of synthetic and natural beidellites: A review. Applied Clay Science, 31, 165179.Google Scholar
Kloprogge, J.T. & Frost, R.L. (1999) An infrared emission spectroscopic study of synthetic and natural pyrophyllite. Neues Jahrbuch fur Mineralogie, Monatshefte, 62-74.Google Scholar
Kloprogge, J.T., Jansen, J.B.H. & Geus, J.W. (1990) Characterization of synthetic Na-beidellite. Clays and Clay Minerals, 38, 409414.Google Scholar
Lantenois, S., Lanson, B., Muller, F., Bauer, A., Jullien, M. & Plançon, A. (2005) Experimental study of smectite interaction with metal Fe at low temperature: 1. Smectite destabilization. Clays and Clay Minerals, 53, 597612.Google Scholar
Lantenois, S., Champallier, R., Bény, J.-M. & Muller, F. (2007) Hydrothermal synthesis and characterization of dioctahedral smectites: a montmorillonite series. Applied Clay Science (submitted)Google Scholar
Mackenzie, R.C. (1957) The Differential Thermal Investigation of Clays. Monograph 2, Mineralogical Society, London.Google Scholar
Mackenzie, R.C. (1970) Differential Thermal Analysis. Vol. I, Academic Press, London.Google Scholar
Mackenzie, R.C. (1982) Down-to-earth thermal analysis. Pp 2536 in: Thermal Analysis (Miller, B., editor). Wiley Heyden Ltd., Chichester, UK.Google Scholar
Madejová, J. & Komadel, P. (2001) Baseline studies of The Clay Minerals Society source clays: infrared methods. Clays and Clay Minerals, 49, 410432.Google Scholar
Madejová, J., Komadel, P. & Čičel, B. (1994) Infrared study of octahedral site populations in smectites. Clay Minerals, 29, 319326.Google Scholar
Madejová, J., Bujdak, J., Petit, S. & Komadel, P. (2000) Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites. (I) Mid-infrared region. Clay Minerals, 35, 739751.Google Scholar
Maqueda, L.A., Perez-Rodriduez, J.L. & Justo, A. (1986) Problems in the dissolution of silicates by acid mixtures. Analyst, 11, 11071108.Google Scholar
Muller, F., Drits, V.A., Plançon, A. & Besson, G. (2000a) Dehydroxylation of Fe3+, Mg-rich dioctahedral micas: (I) structural transformation. Clay Minerals, 35, 491504.Google Scholar
Muller, F., Drits, V.A., Plançon, A. & Robert, J.-L. (2000b) Structural transformation of 2:1 dioctahedral layer silicates during dehydroxylation-rehydroxylation reactions. Clays and Clay Minerals, 48, 572585.Google Scholar
Perez-Maqueda, L.A., Montes, O.M., Gonzalez-Macias, E.M., Franco, F., Poyato, J. & Perez-Rodriguez, J.L. (2004) Thermal transformation of sonicated pyrophyllite. Applied Clay Science, 24, 201207.Google Scholar
Perez-Rodriduez, J.L., Maqueda, L.A. & Justo, A. (1985) Pyrophyllite determination in mineral mixture. Clays and Clay Minerals, 33, 563566.Google Scholar
Petit, S., Caillaud, J., Righi, D., Madejová, J., Elsass, F. & Köster, H.M. (2002) Characterization and crystal chemistry of an Fe-rich montmorillonite from Ölberg, Germany. Clay Minerals, 37, 283297.Google Scholar
Roux, J. & Volfinger, M. (1996) Mesures précises à l’aide d’un détecteur courbe. Journal de Physique, IV, 127134.Google Scholar
Russell, J.D., Farmer, V.C. & Velde, B. (1970) Replacement of OH by OD in layer silicates, and identification of the vibrations of these groups in infra-red spectra. Mineralogical Magazine, 37, 869879.Google Scholar
Sanchez-Soto, P.J. & Perez-Rodriguez, J.L. (1989) Thermal analysis of pyrophyllite transformations. Thermochimica Acta, 138, 267276.Google Scholar
Schomburg, J. (1985) Thermal investigations of pyrophyllites. Thermochimica Acta, 93, 521524.Google Scholar
Schroeder, P.A. (2002) Infrared spectroscopy in clay science. Pp. 181206 in: Teaching Clay Science (Rule, A. & Guggenheim, S., editors). CMS Workshop Lectures, 11, The Clay Minerals Society, Aurora, Colorado.Google Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 32, 751767.Google Scholar
Slonimskaya, M.V., Besson, G., Dainyak, L.G., Tchoubar, C. & Drits, V.A. (1986) The interpretation of the IR spectra of celadonites and glauconites in the region of the OH stretching frequencies. Clay Minerals, 21, 377388.Google Scholar
Trauth, N. & Lucas, J. (1967) Apport des méthodes thermiques dans l’étude des minéraux argileux. Bulletin du Groupe Français des Argile, XIX-2, 11-24.Google Scholar
Tsipursky, S.I. & Drits, V.A. (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique texture electron diffraction. Clay Minerals, 19, 177192.Google Scholar
Tsipursky, S.I., Kameneva, M.Y. & Drits, V.A. (1985) Structural transformation of Fe3+-containing 2:1 dioctahedral phyllosilicates in the course of dehydration. Pp. 569577 in: Proceedings of the 5th Conference of the European Clay Groups (Konta, J., editor), Prague.Google Scholar
Velde, B. (1978) Infrared spectra of synthetic micas in the series muscovite — MgAl celadonite. American Mineralogist, 63, 343349.Google Scholar
Velde, B. (1983) Infrared OH-stretch bands in potassic micas, talcs and saponites; influence of electronic configuration and site of charge compensation. American Mineralogist, 68, 11691173.Google Scholar
Wang, L. & Zhang, Z. (1997a) Principles and methods of quantitative analysis on b-axis disorder in 2:1 dioctahedral phyllosilicate. Chinese Science Bulletin, 42, 19081911.Google Scholar
Wang, L. & Zhang, Z. (1997b) Orientating structure of hydroxyls in 2:1 phyllosilicates. Chinese Science Bulletin, 42, 321324.Google Scholar
Wang, L., Zhang, M., Redfern, S.A.T. & Zhang, Z. (2002) Dehydroxylation and transformations of the 2:1 phyllosilicate pyrophyllite at elevated temperatures: an infrared spectroscopic study. Clays and Clay Minerals, 50, 272283.Google Scholar
Wardle, R. & Brindley, G.W. (1972) The crystal structures of pyrophyllite, 1Tc, and of its dehydroxylate. American Mineralogist, 57, 732750.Google Scholar
Wilkins, R.W.T. & Ito, J. (1967) Infrared spectra of some synthetic talcs. American Mineralogist, 52, 16491661.Google Scholar
Zviagina, B.B., McCarty, D.K., Srodoń, J. & Drits, V.A. (2004) Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations. Clays and Clay Minerals, 52, 399410.Google Scholar