Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T15:47:25.374Z Has data issue: false hasContentIssue false

Hybrid systems based on organic dyes and clay minerals: Fundamentals and potential applications#

Published online by Cambridge University Press:  02 January 2018

Juraj Bujdák*
Affiliation:
Comenius University in Bratislava, Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, 842 15 Bratislava, Slovakia Institute of Inorganic Chemistry, Slovak Academy of Sciences, 845 36 Bratislava, Slovakia
*

Abstract

This review summarizes several aspects of the interactions between organic dyes and clay minerals, and presents some interesting properties of hybrid materials based on these components. It explains the basic phenomena and photophysical properties of dye/clay mineral hybrid systems (DCHS) while examining the role of clay minerals in them. A brief history of using dyes as tools for clay research and on traditional materials based on DCHS is presented. Metachromasy, the phenomenon of colour change related to the formation of dye molecular aggregates is described in detail and analysed from various perspectives. The properties of DCHS, including photoactivity, luminescence, photocatalytic properties, optical anisotropy and non-linear optical properties are analysed in detail. Clay minerals often play a significant role in the occurrence of specific photophysical phenomena such as resonance energy transfer and luminescence quenching and may influence various reactions, such as conformational changes in dye molecules, photochromism, photoisomerization, photosensitization and other photochemical processes. Routes to synthesize various types of hybrid materials are also described here. The relevance of DCHS for clay research, chemistry and materials science is summarized briefly.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

#

Gerhard Lagaly Award Lecture, 2014

References

Bae, J.Y., Jung, J.I. & Bae, B.S. (2004) Photochromism in spiropyran impregnated fluorinated mesoporous organosilicate films. Journal of Materials Research, 19, 25032509.Google Scholar
Bailey, G.W. & Karickhoff, S.W. (1973) An ultraviolet spectroscopic method for monitoring surface acidity of clay minerals under varying water content. Clays and Clay Minerals, 21, 471477.Google Scholar
Belušáková, S., Lang, K. & Bujdák, J. (2015) Hybrid systems based on layered silicate and organic dyes for cascade energy transfer. The Journal of Physical Chemistry C, 119, 2178421794.Google Scholar
Bergmann, K. & O'Konski, C.T. (1963) A spectroscopic study of Methylene blue monomer, dimer, and complexes with montmorillonite. Journal of Physical Chemistry, 67, 21692177.Google Scholar
Bhattacharyya, A.K. & Bhattacharya, G. (1996) Chromotropic behaviours of chalta (dillenia indica) fruit mucilage polysaccharide towards some cationic dyes. Journal of the Indian Chemical Society, 73, 46366.Google Scholar
Boutton, C., Kauranen, M., Persoons, A., Keung, M.P., Jacobs, K.Y. & Schoonheydt, R.A. (1997) Enhanced second-order optical nonlinearity of dye molecules adsorbed onto Laponite particles. Clays and Clay Minerals, 45, 483485.Google Scholar
Breen, C. & Loughlin, H. (1994) The competitive adsorption of methylene-blue on to Na-montmoril-lonite from binary-solution with n-alkylytrimethyl-ammonium surfactants. Clay Minerals, 29, 775783.Google Scholar
Breen, C. & Rock, B. (1994) The competitive adsorption of methylene-blue on to montmorillonite from binary-solution with thioflavin-t, proflavine and acridine yellow — steady-state and dynamic studies. Clay Minerals, 29, 179189.CrossRefGoogle Scholar
Bujdák, J. (2006) Effect of the layer charge of clay minerals on optical properties of organic dyes. A review. Applied Clay Science, 34, 5873.CrossRefGoogle Scholar
Bujdák, J. (2014) Layer-by-layer assemblies composed of polycationic electrolyte, organic dyes, and layered silicates. Journal of Physical Chemistry C, 118, 71527162.Google Scholar
Bujdák, J. & Iyi, N. (2005) Molecular orientation of Rhodamine dyes on surfaces of layered silicates. Journal of Physical Chemistry B, 109, 46084615.Google Scholar
Bujdák, J. & Iyi, N. (2006a) Molecular aggregation of Rhodamine dyes in dispersions of layered silicates: Influence of dye molecular structure and silicate properties. Journal of Physical Chemistry B, 110, 21802186.Google Scholar
Bujdák, J. & Iyi, N. (2006b) Spectral and structural characteristics of oxazine 4/hexadecyltrimethyl-ammonium montmorillonite films. Chemistry of Materials, 18, 26182624.Google Scholar
Bujdák, J. & Iyi, N. (2008) Spectral properties of tetraanionic porphyrin in formamide colloids of layered double hydroxides. Central European Journal of Chemistry, 6, 569574.Google Scholar
Bujdák, J. & Iyi, N. (2012) Highly fluorescent colloids based on Rhodamine 6G, modified layered silicate, and organic solvent. Journal of Colloid and Interface Science, 388, 1520.Google Scholar
Bujdák, J. & Komadel, P. (1997) Interaction of Methylene blue with reduced charge montmorillonite. Journal of Physical Chemistry B, 101, 90659068.Google Scholar
Bujdák, J., Janek, M., Madejová, J. & Komadel, P. (1998) Influence of the layer charge density of smectites on the interaction with Methylene blue. Journal of the Chemical Society-Faraday Transactions, 94, 34873492.Google Scholar
Bujdak, I., Janek, M., Madejová, J. & Komadel, P. (2001) Methylene blue interactions with reduced-charge smectites. Clays and Clay Minerals, 49, 244254.Google Scholar
Bujdák, J., Iyi, N. & Fujita, T. (2002a) Aggregation and stability of l,l'-diethyl-4,4'-cyanine dye on the surface of layered silicates with different charge densities. Colloids and Surfaces A — Physicochemical and Engineering Aspects, 207, 207—214.Google Scholar
Bujdák, J., Iyi, N. & Fujita, T. (2002b) The aggregation of Methylene blue in montmorillonite dispersions. Clay Minerals, 37, 121133.Google Scholar
Bujdak, I., Iyi, N., Hrobáriková, J. & Fujita, T. (2002c) Aggregation and decomposition of a pseudoisocya-nine dye in dispersions of layered silicates. Journal of Colloid and Interface Science, 247, 494503.Google Scholar
Bujdák, J., Iyi, N. & Fujita, T. (2003a) Isomerization of cationic azobenzene derivatives in dispersions and films of layered silicates. Journal of Colloid and Interface Science, 262, 282289.Google Scholar
Bujdák, J., Iyi, N., Kaneko, Y., Czímerová, A. & Sasai, R. (2003b) Molecular arrangement of Rhodamine 6G cations in the films of layered silicates: The effect of the layer charge. Physical Chemistry Chemical Physics, 5, 46804685.Google Scholar
Bujdák, J., Iyi, N., Kaneko, Y. & Sasai, R. (2003c) Molecular orientation of Methylene blue cations adsorbed on clay surfaces. Clay Minerals, 38, 561572.CrossRefGoogle Scholar
Bujdák, J., Iyi, N. & Sasai, R. (2004) Spectral properties, formation of dye molecular aggregates, and reactions in Rhodamine 6G/layered silicate dispersions. Journal of Physical Chemistry B, 108, 44704477.Google Scholar
Bujdak, I., Martinez, Y.M., Arbeloa, F.L. & Iyi, N. (2007) Spectral properties of Rhodamine 3b adsorbed on the surface of montmorillonites with variable layer charge. Langmuir, 23, 18511859.Google Scholar
Bujdak, I., Czimerová, A. & Iyi, N. (2008) Structure of cationic dyes assemblies intercalated in the films of montmorillonite. Thin Solid Films, 517, 793799.Google Scholar
Bujdák, J., Chorvát, D. & Iyi, N. (2010) Resonance energy transfer between Rhodamine molecules adsorbed on layered silicate particles. Journal of Physical Chemistry C, 114, 12461252.Google Scholar
Bujdak, I., Czímerová, A. & Arbeloa, F.L. (2011) Two-step resonance energy transfer between dyes in layered silicate films. Journal of Colloid and Interface Science, 364, 497504.Google Scholar
Bujdák, J., Danko, M., Chorvát, D. Jr.,Czímerová, A., Sýkora, J. & Lang K (2012) Selective modification of layered silicate nanoparticle edges with fluorophores. Applied Clay Science, 65-66, 152157.Google Scholar
Carrado, K.A., Forman, J.E., Botto, R.E. & Winans, R.E. (1993) Incorporation of phthalocyanines by cationic and anionic clays via ion-exchange and direct synthesis. Chemistry of Materials, 5, 472—478.Google Scholar
Čeklovský, A.,Czímerová, A., Lang, K. & Bujdák, J. (2009) Layered silicate films with photochemically active porphyrin cations. Pure and Applied Chemistry, 81, 13851396.Google Scholar
Čeklovský, A., Takagi, S. & Bujdák, J. (2011) Study of spectral behaviour and optical properties of cis/trans-bis (n-methylpyridinium-4-yl)diphenyl porphyrin adsorbed on layered silicates. Journal of Colloid and Interface Science, 360, 26—30.Google Scholar
Cenens, J. & Schoonheydt, R.A. (1988) Visible spectros-copy of Methylene blue on hectorite, Laponite b, and barasym in aqueous suspension. Clays and Clay Minerals, 36, 214224.Google Scholar
Chao, T.Y., Chang, H.L., Su, W.C., Wu, J.Y. & Jeng, R.J. (2008) Nonlinear optical polyimide/montmorillonite nanocomposites consisting of azobenzene dyes. Dyes and Pigments, 77, 515524.CrossRefGoogle Scholar
Chen, G.M., Iyi, N.B., Sasai, R., Fujita, T. & Kitamura, K. (2002) Intercalation of Rhodamine 6G and oxazine 4 into oriented clay films and their alignment. Journal of Materials Research, 17, 10351040.Google Scholar
Chernia, Z. & Gill, D. (1999) Flattening of TMPyP adsorbed on Laponite. Evidence in observed and calculated UV-Vis spectra. Langmuir, 15, 16251633.Google Scholar
Cione, A.P.P., Schmitt, C.C., Neumann, M.G. & Gessner, F. (2000) The effect of added salt on the aggregation of clay particles. Journal of Colloid and Interface Science, 226, 205209.Google Scholar
Czímerová, A., Jankovič, L. & Bujdák, J. (2004) Effect of the exchangeable cations on the spectral properties of Methylene blue in clay dispersions. Journal of Colloid and Interface Science, 274, 126132.Google Scholar
Czímerová, A., Bujdák, J. & Dohrmann, R. (2006) Traditional and novel methods for estimating the layer charge of smectites. Applied Clay Science, 34, 213.CrossRefGoogle Scholar
Czimerová, A., Iyi, N. & Bujdák, J. (2008) Fluorescence resonance energy transfer between two cationic laser dyes in presence of the series of reduced-charge montmorillonites: Effect of the layer charge. Journal of Colloid and Interface Science, 320, 140151.Google Scholar
Czimerová, A.,Jankovič, L., Madejová, J. & Čeklovský, A. (2013) Unique photoactive nanocomposites based on Rhodamine 6G/polymer/montmorillonite hybrid systems. Journal of Polymer Science Part B — Polymer Physics, 51, 16721679.Google Scholar
Dawydoff, W., Linow, K.J. & Philipp, B. (1991) Formation, structure and application of complexes of polyelec-trolytes and ionic dyes (review). 2. Complexes between anionic polymers and cationic dyes. Acta Polymerica, 42, 646650.Google Scholar
de Carvalho, A.L., Ferreira, B.F., Martins, C.H.G., Nassar, E.J., Nakagaki, S., Machado, G.S., Rives, V., Trujillano, R., Vicente, M.A., Gil, A., Korili, S.A., de Faria, E.H. & Ciuffi, K.J. (2014) Tetracarboxyphenylporphyrin-kaolinite hybrid materials as efficient catalysts and antibacterial agents. Journal of Physical Chemistry C, 118, 2456224574.Google Scholar
Demoz, A. & Mikula, R.J. (2011) A thermometric indicator method as a replacement for the filter paper spot test in the titration of clays using Methylene blue. Engineering Geology, 117, 1216.Google Scholar
Detellier, C. & Villemure, G. (1984) Clay-assisted visible light water photoreduction. Inorganica Chimica Acta, 86, L19L20.CrossRefGoogle Scholar
Dey, D., Bhattacharjee, D., Chakraborty, S. & Hussain, S.A. (2013) Effect of nanoclay Laponite and pH on the energy transfer between fluorescent dyes. Journal of Photochemistry and Photobiology A: Chemistry, 252, 174182.Google Scholar
Doménech, A., Doménech-Carbó, M.T. & Vázquez De Agredos-Pascual, M.L. (2011) From Maya blue to “Maya Yellow”: A connection between ancient nanostructured materials from the voltammetry of microparticles. Angewandte Chemie — International Edition, 50, 57415744.Google Scholar
Dudkina, M.M., Tenkovtsev, A.V., Pospiech, D., Jehnichen, D., Häußler, L. & Leuteritz, A. (2005) Nanocomposites of NLO chromophore-modified layered silicates and polypropylene. Journal of Polymer Science, Part B: Polymer Physics, 43, 24932502.Google Scholar
Eguchi, M., Tachibana, H., Takagi, S., Tryk, D.A. & Inoue, H. (2007) Dichroic measurements on dicationic and tetracationic porphyrins on clay surfaces with visible-light-attenuated total reflectance. Bulletin of the Chemical Society of Japan, 80, 13501356.Google Scholar
Epelde-Elezcano, N., Duque-Redondo, E., Martínez-Martínez, V., Manzano, H. & López-Arbeloa, I. (2014) Preparation, photophysical characterization, and modeling of LDS722/Laponite 2D-Ordered hybrid films. Langmuir, 30, 1011210117.Google Scholar
Fischer, D., Caseri, W.R. & Hahner, G. (1998) Orientation and electronic structure of ion exchanged dye molecules on mica: An X-ray absorption study. Journal of Colloid and Interface Science, 198, 337346.Google Scholar
Fujii, K., Iyi, N., Sasai, R. & Hayashi, S. (2008) Preparation of a novel luminous heterogeneous system: Rhodamine/ coumarin/phyllosilicate hybrid and blue shift in fluorescence emission. Chemistry of Materials, 20, 29943002.Google Scholar
Fujii, K., Iyi, N., Hashizume, H., Shimomura, S. & Ando, T. (2009) Preparation of integrated coumarin/cyanine systems within an interlayer of phyllosilicate and fluorescence resonance energy transfer. Chemistry of Materials, 21, 11791181.Google Scholar
Fujimura, T., Shimada, T., Hamatani, S., Onodera, S., Sasai, R., Inoue, H. & Takagi, S. (2013) High density intercalation of porphyrin into transparent clay membrane without aggregation. Langmuir, 29, 50605065.Google Scholar
Garfinkel-Shweky, D. & Yariv, S. (1997) The determin-ation of surface basicity of the oxygen planes of expanding clay minerals by acridine orange. Journal of Colloid and Interface Science, 188, 168175.CrossRefGoogle Scholar
Gemeay, A.H. (2002) Adsorption characteristics and the kinetics of the cation exchange of Rhodamine-6G with Na+-montmorillonite. Journal of Colloid and Interface Science, 251, 235241.Google Scholar
Gvishi, R., Narang, U., Ruland, G., Kumar, D.N. & Prasad, P.N. (1997) Novel, organically doped, sol-gel-derived materials for photonics: Multiphasic nanostructured composite monoliths and optical fibers. Applied Organometallic Chemistry, 11, 107—127.Google Scholar
Hähner, G., Marti, A., Spencer, N.D. & Caseri, W.R. (1996) Orientation and electronic structure of Methylene blue on mica: A near edge X-ray absorption fine structure spectroscopy study. Journal of Chemical Physics, 104, 77497757.Google Scholar
Hambleton, W.W. & Dodd, C.G. (1953) A qualitative color test for rapid identification of the clay mineral groups. Economic Geology, 48, 139—146.Google Scholar
Hang, P.T. & Brindley, G.W. (1970) Methylene blue absorption by clay minerals. Determination of surface areas and cation exchange capacities (clay-organic studies xviii). Clays and Clay Minerals, 18, 203212.Google Scholar
Hata, H., Kobayashi, Y. & Mallouk, T.E. (2007) Encapsulation of anionic dye molecules by a swelling fluoromica through intercalation of cationic polyelec-trolytes. Chemistry of Materials, 19, 7987.Google Scholar
Holmes, W.C. (1926) The chemical nature of metachro-masy. Biotechnic and Histochemistry, 1, 116—122.Google Scholar
Hussain, S.A., Chakraborty, S., Bhattacharjee, D. & Schoonheydt, R.A. (2010) Fluorescence resonance energy transfer between organic dyes adsorbed onto nano-clay and Langmuir-Blodgett (lb) films. Spectrochimica Acta Part A — Molecular and Biomolecular Spectroscopy, 75, 664—670.Google Scholar
Ianchis, R., Donescu, D., Purcar, V., Fierascu, R.D., Petcu, C. & Raditoiu, V. (2009) Organic/inorganic hybrid latexes colored with azoic dyes. Optoelectronics and Advanced Materials — Rapid Communications, 3, 7782.Google Scholar
Ishida, Y., Masui, D., Tachibana, H., Inoue, H., Shimada, T. & Takagi, S. (2012) Controlling the microadsorption structure of porphyrin dye assembly on clay surfaces using the “size-matching rule” for constructing an efficient energy transfer system. ACS Applied Materials & Interfaces, 4, 811816.Google Scholar
Ishida, Y., Kulasekharan, R., Shimada, T., Ramamurthy, V. & Takagi, S. (2014) Supramolecular-surface photochemistry: Supramolecular assembly organized on a clay surface facilitates energy transfer between an encapsulated donor and a free acceptor. Journal of Physical Chemistry C, 118, 1019810203.Google Scholar
Iu, K.K., Liu, X. & Thomas, J.K. (1991) Photoinduced ionization of arenes on Laponite clay: A single-photon process. Chemical Physics Letters, 186, 198203.CrossRefGoogle Scholar
Iyi, N., Sasai, R., Fujita, T., Deguchi, T., Sota, T., Arbeloa, F.L. & Kitamura, K. (2002) Orientation and aggregation of cationic laser dyes in a fluoromica: Polarized spec-trometry studies. Applied Clay Science, 22, 125—136.Google Scholar
Jacobs, K.Y. & Schoonheydt, R.A. (1999) Spectroscopy of Methylene blue-smectite suspensions. Journal of Colloid and Interface Science, 220, 103111.Google Scholar
Jacobs, K.Y. & Schoonheydt, R.A. (2001) Time dependence of the spectra of Methylene blue-clay mineral suspensions. Langmuir, 17, 51505155.Google Scholar
Jehnichen, D., Tenkovtsev, A.V., Oertel, U., Dudkina, M.M., Lukoshkin, V.A., Bursian, A.E., Friedel, P. & Pospiech, D. (2008) Optical effects of intercalation of a nlo active chromophore into montmorillonite clay. Journal of Nanostructured Polymers and Nanocomposites, 4, 8793.Google Scholar
José-Yacamán, M., Rendón, L., Arenas, J. & SerraPuche, M.C. (1996) Maya blue paint: An ancient nanostructured material. Science, 273, 223225.Google Scholar
Kakegawa, N., Kondo, T. & Ogawa, M. (2003) Variation of electron-donating ability of smectites as probed by photoreduction of methyl viologen. Langmuir, 19, 35783582.Google Scholar
Kaneko, Y., lyi, N., Bujdák, J., Sasai, R. & Fujita, T. (2003) Molecular orientation of Methylene blue intercalated in layer-charge-controlled montmorillonites. Journal of Materials Research, 18, 26392643.Google Scholar
Kasha, M. (1963) Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radiation Research, 20, 55—70.Google Scholar
Kawamata, J. & Hasegawa, S. (2006) Clay-assisted disaggregation and stabilization in hemicyanine Lanmuir-Blodgett films. Journal of Nanoscience and Nanotechnology 6, 16201624.Google Scholar
Kawamata, J., Suzuki, Y. & Tenma, Y. (2010) Fabrication of clay mineral-dye composites as nonlinear optical materials. Philosophical Magazine, 90, 2519—2527.Google Scholar
Kerry Thomas, J. (1993) Physical aspects of photochemistry and radiation chemistry of molecules adsorbed on SiO2, γ-Al2O3, zeolite, and clays. Chemical Reviews, 93, 301320.Google Scholar
Klika, Z., Pustková, P., Praus, P., Kovaf, P., Pospíšil, M., Malý, P., Grygar, T., Kulhánková, L. & Čapková P. (2009) Fluorescence of reduced charge montmorillonite complexes with Methylene blue: Experiments and molecular modeling. Journal of Colloid and Interface Science, 339, 416423.Google Scholar
Kong, L. & Ferry, J.L. (2003) Effect of salinity on the photolysis of chrysene adsorbed to a smectite clay. Environmental Science and Technology, 37, 48944900.Google Scholar
Kugel, R.W. (1993) Metachromasy — the interaction between dyes and polyelectrolytes in aqueous solution. Advances in Chemistry Series, 507-533.Google Scholar
Kuroda, T., Fujii, K. & Sakoda, K. (2010) Ultrafast energy transfer in a multichromophoric layered silicate. Journal of Physical Chemistry C, 114, 983989.Google Scholar
P., Labbé & Reverdy, G. (1988) Adsorption characteristics of polycyclic aromatic compounds on clay: Pyrene as a photophysical probe on Laponite. Langmuir, 4, 41925.Google Scholar
Laschewsky, A., Wischerhoff, E., Kauranen, M. & Persoons, A. (1997) Polyelectrolyte multilayer assemblies containing nonlinear optical dyes. Macromolecules, 30, 83048309.Google Scholar
Latterini, L., Nocchetti, M., Aloisi, G.G., Costantino, U. & Elisei, F. (2007) Organized chromophores in layered inorganic matrices. Inorganica Chimica Acta, 360, 728740.Google Scholar
Lebeau, B. & Sanchez, C. (1999) Sol-gel derived hybrid inorganic-organic nanocomposites for optics. Current Opinion in Solid State & Materials Science, 4, 1123.Google Scholar
Li, H.Y. & Li, Q.A. (2003a) Organic dye-layered silicate optical functional nanocomposites. Progress in Chemistry, 15, 135140.Google Scholar
Li, Z. & Li, Q. (2003b) Electrostatic self-assembly polyelectrolyte/cation azobenzene dye-montmorillon-ite photochromic nanocomposite films. Acta Chimica Sinica, 61, 422426.Google Scholar
Liu, P. & Zhang, L.X. (2007) Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents. Separation and Purification Technology, 58, 3239.Google Scholar
Liu, R., Guo, Y., Wang, Z. & Liu, J. (2014) Iron species in layered clay: Efficient electron shuttles for simultaneous conversion of dyes and Cr(VI). Chemosphere, 95, 643646.Google Scholar
Liu, X., Iu, K.K. & Kerry Thomas, J. (1992) Studies of surface properties of clay Laponite using pyrene as a photophysical probe molecule. 2. Photoinduced electron transfer. Langmuir, 8, 539545.Google Scholar
Lofaj, M. & Bujdák, J. (2012) Detection of smectites in ppm and sub-ppm concentrations using dye molecule sensors. Physics and Chemistry of Minerals, 39, 227237.Google Scholar
Lofaj, M., Valent, I. & Bujdák, J. (2013) Mechanism of Rhodamine 6G molecular aggregation in montmorillonite colloid. Central European Journal of Chemistry, 11, 16061619.Google Scholar
López Arbeloa, F. & Martínez Martínez, V. (2006a) New fluorescent polarization method to evaluate the orientation of adsorbed molecules in uniaxial 2d layered materials. Journal of Photochemistry and Photobiology A: Chemistry, 181, 449.Google Scholar
López Arbeloa, F. & Martínez Martínez, V. (2006b) Orientation of adsorbed dyes in the interlayer space of clays. 2. Fluorescence polarization of Rhodamine 6G in Laponite films. Chemistry of Materials, 18, 14071416.Google Scholar
Martinez, Y.M., Arbeloa, F.L., Prieto, J.B. & Arbeloa, I.L. (2005) Orientation of adsorbed dyes in the interlayer space of clays. 1. Anisotropy of Rhodamine 6G in Laponite films by Vis-absorption with polarized light. Chemistry of Materials, 17, 41344141.Google Scholar
Matejdes, M., Czímerová, A. & Janek, M. (2015) Fluorescence tuning of 2D montmorillonite optically active layers with beta-cyclodextrine/dye supramole-cular complexes. Applied Clay Science, 114, 919.Google Scholar
Michaelis, L. & Granick, S. (1945) Metachromasy of basic dyestuffs. Journal of the American Chemical Society, 67, 12121219.Google Scholar
Miyata, H., Sugahara, Y., Kuroda, K. & Kato, C. (1987) Synthesis of montmorillonite-viologen intercalation compounds and their photochromic behaviour. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 83, 18511858.Google Scholar
Murakami, K. (2002) Thermodynamic and kinetic aspects of self-association of dyes in aqueous solution. Dyes andPigments, 53, 3143.Google Scholar
Nandini, R. & Vishalakshi, B. (2009) A comparitive study of polyelectrolyte-dye interactions. Spectrochimica Acta Part A — Molecular and Biomolecular Spectroscopy, 74, 10251030.Google Scholar
Nandini, R. & Vishalakshi, B. (2010) A study of interaction of cationic dyes with anionic polyelectrolytes. Spectrochimica Acta Part A — Molecular and Biomolecular Spectroscopy, 75, 1420.Google Scholar
Neumann, M.G., Schmitt, C.C. & Gessner, F. (1996) Time-dependent spectrophotometric study of the interaction of basic dyes with clays. 2. Thionine on natural and synthetic montmorillonites and hectorites. Journal of Colloid and Interface Science, 177, 495501.Google Scholar
Nishikiori, H., Sasai, R., Takagi, K. & Fujii, T. (2006) Zinc chelation and photofluorochromic behavior of spironaphthoxazine intercalated into hydrophobically modified montmorillonite. Langmuir, 22, 33763380.CrossRefGoogle ScholarPubMed
Ogawa, M. (1996) Preparation of a cationic azobenzene derivative-montmorillonite intercalation compound and the photochemical behavior. Chemistry of Materials, 8, 1347-&.Google Scholar
Ogawa, M., Hama, M. & Kuroda, K. (1999) Photochromism of azobenzene in the hydrophobic interlayer spaces of dialkyldimethylammonium-fluor-tetrasilicic mica films. Clay Minerals, 34, 213220.Google Scholar
Ogawa, M., Ishii, T., Miyamoto, N. & Kuroda, K. (2001) Photocontrol of the basal spacing of azobenzene-magadiite intercalation compound. Advanced Materials, 13, 11071109.Google Scholar
Okada, T., Sakai, H. & Ogawa, M. (2008) The effect of the molecular structure of a cationic azo dye on the photoinduced intercalation of phenol in a montmorillonite. Applied Clay Science, 40, 187192.Google Scholar
Okada, T., Yoshido, S., Miura, H., Yamakami, T., Sakai, T. & Mishima, S. (2012) Swellable microsphere of a layered silicate produced by using monodispersed silica particles. Journal of Physical Chemistry C, 116, 2186421869.Google Scholar
Paczkowska, B., Strzelec, S., Jedrzejewska, B., Linden, L.A. & Paczkowski, J. (2004) Photochemical preparation of polymer-clay composites. Applied Clay Science, 25, 221227.Google Scholar
Pappenheim, A. (1910) Zur farbchemischen theorie der metachromasie. Virchows Archiv für Pathologische Anatomie und Physiologie undfür Klinische Medizin, 200, 572.Google Scholar
Place, I., Penner, T.L., McBranch, D.W. & Whitten, D.G. (2003) Layered nanocomposites of aggregated dyes and inorganic scaffolding. Journal of Physical Chemistry A, 107, 31693177.Google Scholar
Ramachandran, V.S., Kacker, K.P. & Patwardhan, N.K. (1961) Basic dyestuffs in clay mineralogy. Nature, 191, 696.Google Scholar
Ras, R.H.A., Johnston, C.T., Franses, E.I., Ramaekers, R., Maes, G., Foubert, P., De Schryver, F.C. & Schoonheydt, R.A. (2003a) Polarized infrared study of hybrid Langmuir-Blodgett monolayers containing clay mineral nanoparticles. Langmuir, 19, 4295—4302.Google Scholar
Ras, R.H.A., van Duffel, B., Van der Auweraer, M., De Schryver, F.C. & Schoonheydt, R.A. (2003b) Molecular and particulate organisation in dye-clay films prepared by the Langmuir-Blodgett method. 2001 - a Clay Odyssey, 473-480.Google Scholar
Ras, R.H.A., Nemeth, J., Johnston, C.T., Dekany, I. & Schoonheydt, R.A. (2004a) Infrared reflection absorption spectroscopy study of smectite clay monolayers. Thin Solid Films, 466, 291294.Google Scholar
Ras, R.H.A., Nemeth, J., Johnston, C.T., Dekany, I. & Schoonheydt, R.A. (2004b) Orientation and conformation of octadecyl Rhodamine b in hybrid Langmuir-Blodgett monolayers containing clay minerals. Physical Chemistry Chemical Physics, 6, 53475352.Google Scholar
Ras, R.H.A., Nemeth, J., Johnston, C.T., DiMasi, E., Dekany, I. & Schoonheydt, R.A. (2004c) Hybrid Langmuir-Blodgett monolayers containing clay minerals: Effect of clay concentration and surface charge density on the film formation. Physical Chemistry Chemical Physics, 6, 41744184.Google Scholar
Ras, R.H.A., Schoonheydt, R.A. & Johnston, C.T. (2007) Relation between S-polarized and P-polarized internal reflection spectra: Application for the spectral resolution of perpendicular vibrational modes. Journal of Physical Chemistry A, 111, 87878791.Google Scholar
Rytwo, G., Nir, S. & Margulies, L. (1995) Interactions of monovalent organic cations with montmorillonite — adsorption studies and model-calculations. Soil Science Society of America Journal, 59, 554564.Google Scholar
Samuels, M.,Mor, O. & Rytwo, G. (2013) Metachromasy as an indicator of photostabilization of Methylene blue adsorbed to clays and minerals. Journal of Photochemistry and Photobiology B: Biology, 121, 2326.Google Scholar
Sanchez, C., Lebeau, B., Chaput, F. & Boilot, J.P. (2003) Optical properties of functional hybrid organic-inorganic nanocomposites. Advanced Materials, 15, 19691994.Google Scholar
Sas, S., Danko, M., Lang, K. & Bujdák, J. (2015) Photoactive hybrid material based on kaolinite intercalated with a reactive fluorescent silane. Applied Clay Science, 108, 208214.Google Scholar
Sasai, R., Ogiso, H., Shindachi, I., Shichi, T. & Takagi, K. (2000) Photochromism of diarylethene intercalated in clay interlayers. Molecular Crystals and Liquid Crystals, 345, 363368.Google Scholar
Sasai, R., Itoh, T., Ohmori, W., Itoh, H. & Kusunoki, M. (2009) Preparation and characterization of Rhodamine 6G/alkyltrimethylammonium/Laponite hybrid solid materials with higher emission quantum yield. Journal of Physical Chemistry C, 113, 41521.Google Scholar
Schoonheydt, R.A. (2002) Smectite-type clay minerals as nanomaterials. Clays and Clay Minerals, 50, 411420.Google Scholar
Schoonheydt, R.A. (2014) Functional hybrid clay mineral films. Applied Clay Science, 96, 921.Google Scholar
Schoonheydt, R.A. & Heughebaert, L. (1992) Clay adsorbed dyes — Methylene blue on Laponite. Clay Minerals, 27, 91100.Google Scholar
Schulz-Ekloff, G., Wohrle, D., van Duffel, B. & Schoonheydt, R.A. (2002) Chromophores in porous silicas and minerals: Preparation and optical properties. Microporous and Mesoporous Materials, 51, 91138.Google Scholar
Scully, S.R., Lloyd, M.T., Herrera, R., Giannelis, E.P. & Malliaras, G.G. (2004) Dye-sensitized solar cells employing a highly conductive and mechanically robust nanocomposite gel electrolyte. Synthetic Metals, 144, 291296.Google Scholar
Shibata, S., Yano, T. & Segawa, H. (2008) Organic-inorganic hybrid materials for photonic applications. IEEE Journal of Selected Topics in Quantum Electronics, 14, 13611369.Google Scholar
Shichi, T. & Takagi, K. (2000) Clay minerals as photochemical reaction fields. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 113—130.Google Scholar
Shiragami, T., Mori, Y., Matsumoto, J., Takagi, S., Inoue, H. & Yasuda, M. (2006) Non-aggregated adsorption of cationic metalloporphyrin dyes onto nano-clay sheets films. Colloids and Surfaces A - Physicochemical and Engineering Aspects, 284, 284289.Google Scholar
Staniford, M.C., Lezhnina, M.M. & Kynast, U.H. (2015) Phthalocyanine blue in aqueous solutions. RSC Advances, 5, 39743977.Google Scholar
Stockert, J.C., Del Castillo, P. & Blázquez-Castro, A. (2011) Induction of metachromasia in cationic dyes and fluorochromes using a clay mineral: A potentially valuable model for histochemical studies. Acta Histochemica, 113, 668670.Google Scholar
Stone, A.L. & Bradley, D.F. (1967) Aggregation of cationic dyes on acid polysaccharides I. Spectrophotometric titration with acridine orange and other metachromatic dyes. BBA . General Subjects, 148, 172192.Google Scholar
Šucha, V.,Czímerová, A. & Bujdák, J. (2009) Surface properties of illite-smectite minerals as detected by interactions with Rhodamine 6G dye. Clays and Clay Minerals, 57, 361370.Google Scholar
Suzuki, Y., Tenma, Y., Nishioka, Y., Kamada, K., Ohta, K. & Kawamata, J. (2011) Efficient two-photon absorption materials consisting of cationic dyes and clay minerals. Journal of Physical Chemistry C, 115, 2065320661.Google Scholar
Suzuki, Y., Tenma, Y., Nishioka, Y. & Kawamata, J. (2012) Efficient nonlinear optical properties of dyes confined in interlayer nanospaces of clay minerals. Chemistry — An Asian Journal, 7, 11701179.Google Scholar
Takagi, S., Shimada, T., Yui, T. & Inoue, H. (2001) High density adsorption of porphyrins onto clay layer without aggregation: Characterization of smectite-cationic porphyrin complex. Chemistry Letters, 128-129.Google Scholar
Takagi, S., Eguchi, M., Tryk, D.A. & Inoue, H. (2006) Porphyrin photochemistry in inorganic/organic hybrid materials: Clays, layered semiconductors, nanotubes, and mesoporous materials. Journal of Photochemistry and Photobiology C — Photochemistry Reviews, 7, 104126.Google Scholar
Takagi, S., Eguchi, M., Shimada, T., Hamatani, S. & Inoue, H. (2007) Energy transfer reaction of cationic porphyrin complexes on the clay surface: Effect of sample preparation method. Research on Chemical Intermediates, 33, 177189.Google Scholar
Takagi, S., Shimada, T., Ishida, Y., Fujimura, T., Masui, D., Tachibana, H., Eguchi, M. & Inoue, H. (2013) Size-matching effect on inorganic nanosheets: Control of distance, alignment, and orientation of molecular adsorption as a bottom-up methodology for nanomaterials. Langmuir, 29, 21082119.Google Scholar
Takenawa, R., Komori, Y., Hayashi, S., Kawamata, J. & Kuroda, K. (2001) Intercalation of nitroanilines into kaolinite and second harmonic generation. Chemistry of Materials, 13, 37413746.Google Scholar
Teixeira-Neto, Â.A., Izumi, C.M.S., Temperini, M.L.A., Ferreira, A.M.D.C. & Constantino, V.R.L. (2012) Hybrid materials based on smectite clays and nutraceutical anthocyanins from the Açaí fruit. European Journal of Inorganic Chemistry, 5411-5420.Google Scholar
Thomas, J.K. (1988) Photophysical and photochemical processes on clay surfaces. Accounts of Chemical Research, 21, 275280.Google Scholar
Tuite, E.M. & Kelly, J.M. (1993) Photochemical interac-tions of methylene-blue and analogs with DNA and other biological substrates. Journal of Photochemistry and Photobiology B - Biology, 21, 103124.Google Scholar
Umemoto, T., Ohtani, Y., Tsukamoto, T., Shimada, T. & Takagi, S. (2014) Pinning effect for photoisomerization of a dicationic azobenzene derivative by anionic sites of the clay surface. Chemical Communications, 50, 314—316.Google Scholar
Van Olphen, H. (1966) Maya blue: A clay-organic pigment. Science, 154, 645646.Google Scholar
Wang, C.C., Juang, L.C., Lee, C.K., Hsu, T.C., Lee, J.F. & Chao, H.P. (2004) Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite. Journal of Colloid and Interface Science, 280, 2735.Google Scholar
Wang, P., Cheng, M. & Zhang, Z. (2014) On different photodecomposition behaviors of Rhodamine B on Laponite and montmorillonite clay under visible light irradiation. Journal of Saudi Chemical Society, 18, 308316.Google Scholar
Wang, X., Gao, Y., Zhang, Y., Shen, Y.C., Lu, Z.H. & Cui, Y.P. (2000) Nonlinear optical properties of the Rhodamine aggregates in solution at different pH studied by hyper-Rayleigh scattering technique. Organic Photonic Materials and Devices LI, 3939, 260266.Google Scholar
Yamaoka, K., Sasai, R. & Takata, N. (2000) Electric linear dichroism. A powerful method for the ionic chromophore-colloid system as exemplified by dye and montmorillonite suspensions. Colloids and Surfaces A — Physicochemical and Engineering Aspects, 175, 2339.Google Scholar
Yariv, S. (2002) Staining of clay minerals and, visible absorption spectroscopy of dye-clay complexes. Pp. 463—566 in: Organo-Clay Complexes and Interactions (S. Yariv & H. Cross, editors). Marcel Dekker, New York.Google Scholar
Yukselen, Y. & Kaya, A. (2008) Suitability of the Methylene blue test for surface area, cation exchange capacity and swell potential determination of clayey soils. Engineering Geology, 102, 38—45.Google Scholar
Zhang, J. & Liu, X. (2014) Photocatalytic hydrogen production from water under visible light irradiation using a dye-sensitized attapulgite nanocrystal photo-catalyst. Physical Chemistry Chemical Physics, 16, 86558660.Google Scholar
Zhou, C.H., Shen, Z.F., Liu, L.H. & Liu, S.M. (2011) Preparation and functionality of clay-containing films. Journal of Materials Chemistry, 21, 1513215153.Google Scholar