Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T05:58:15.182Z Has data issue: false hasContentIssue false

Halloysite nanotubes as a new drug-delivery system: a review

Published online by Cambridge University Press:  02 January 2018

Muhammad Hanif*
Affiliation:
Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
Fazila Jabbar
Affiliation:
Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
Sana Sharif
Affiliation:
Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
Ghulam Abbas
Affiliation:
Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
Athar Farooq
Affiliation:
Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
Mubashar Aziz
Affiliation:
Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan

Abstract

New drug-delivery systems have remained a challenge for pharmaceutical scientists due to the use of expensive polymers and the low loading capacity of prepared nanoparticles. There is pressure to develop formulations that contain not only cheaper materials but also have controlled-release properties. Halloysite nanotubes (HNTs) are a naturally occurring clay mineral similar to kaolin, possessing a special particle shape in the form of an ultramicroscopic multilayered hollow cylinder. Its uses encompass a wide range in anticancer therapy, sustained- and controlled-release drug-delivery systems, cosmetics, delivery of proteins, vaccines and genes. These advantages are due to its biocompatibility, significant mechanical strength and natural availability. The surfaces of the tubules can be modified by coating different polymers for application in the drug-delivery system. This review is focused on the various aspects of HNTs such as structure, properties, loading methods, applications and characterizations.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullayev, E. & Lvov, Y. (2010) Clay nanotubes for corrosion inhibitor encapsulation: release control with end stoppers. Journal of Materials Chemistry, 20, 66816687.10.1039/c0jm00810aGoogle Scholar
Abdullayev, E. & Lvov, Y. (2011) Halloysite clay nanotubes for controlled release of protective agents. Journal of Nanoscience and Nanotechnology, 11, 1000710026.10.1166/jnn.2011.5724CrossRefGoogle ScholarPubMed
Aguzzi, C., Viseras, C., Cerezo, P., Salcedo, I., Sánchez-Espejo, R. & Valenzuela, C. (2013) Release kinetics of 5-aminosalicylic acid from halloysite. Colloids and Surfaces B: Biointerfaces, 105, 7580.10.1016/j.colsurfb.2012.12.041CrossRefGoogle ScholarPubMed
Aras, A., Khokhar, A.R., Qureshi, M.Z., Silva, M.F., Sobczak-Kupiec, A., Pineda, E.A.G., Hechenleitner, A.A.W. & Farooqi, A.A. (2014) Targeting cancer with nano-bullets: curcumin, EGCG, resveratrol and quer-cetin on flying carpets. Asian Pacific Journal of Cancer Prevention, 15, 38653871.10.7314/APJCP.2014.15.9.3865Google Scholar
Brigatti, M., Galán, E. & Theng, B. (2006) Structures and mineralogy of clay minerals. Developments in Clay Science, 1, Elsevier, Amsterdam, pp. 1986.10.1016/S1572-4352(05)01002-0Google Scholar
Cervini-Silva, J., Nieto-Camacho, A., Palacios, E., Montoya, J.A., Gómez-Vidales, Y/ & Ramírez-Apán, M.T. (2013) Anti-inflammatory and anti-bacterial activity, and cytotoxicity of halloysite surfaces. Colloids and Surfaces B: Biointerfaces, 111, 651655.10.1016/j.colsurfb.2013.06.056Google Scholar
Chiriaco, F., Conversano, F., Sbenaglia, E., Casciaro, S., Leporatti, S. & Lay-Ekuakille, A. (2014) Cytotoxicity measurements of halloysite nanotubes for nanomedi-cine applications. Medical Measurements and Applications (MeMeA), 2014 IEEE International Symposium on, IEEE.Google Scholar
Chrzanowski, W., Kim, S.Y. & Neel, E.A.A. (2013) Biomedical applications of clay. Australian Journal of Chemistry, 66, 13151322.10.1071/CH13361Google Scholar
Cornejo-Garrido, H., Nieto-Camacho, A., Gómez-Vidales, Y., Ramírez-Apan, M.T., del Angel, P., Montoya, J.A., Domínguez-López, M., Kibanova, D. & Cervini-Silva, J. (2012) The anti-inflammatory properties of halloysite. Applied Clay Science, 57, 1016.10.1016/j.clay.2011.12.001Google Scholar
Di Paola, M., Chiriaco E, Soloperto, G., Conversano, F. & Casciaro, S. (2014) Echographic imaging of tumoral cells through novel nanosystems for image diagnosis. World Journal of Radiology, 6, 459.10.4329/wjr.v6.i7.459Google Scholar
Dong, Y., Skelley, A.M., Merdek, K.D., Sprott, K.M., Jiang, C., Pierceall, W.E., Lin, J., Stocum, M., Carney, W.P. & Smirnov, D.A. (2013) Microfluidics and circulating tumor cells. The Journal of Molecular Diagnostics, 15, 149157.10.1016/j.jmoldx.2012.09.004Google Scholar
Du, M., Guo, B. & Jia, D. (2010) Newly emerging applications of halloysite nanotubes: a review. Polymer International, 59, 574582.Google Scholar
Forsgren, J., Jämstorp, E., Bredenberg, S., Engqvist, H. & Strømme, M. (2010) A ceramic drug delivery vehicle for oral administration of highly potent opioids. Journal of Pharmaceutical Sciences, 99, 219226.10.1002/jps.21814CrossRefGoogle ScholarPubMed
Ghodke, S.A., Sonawane, S.H., Bhanvase, B.A., Mishra, S. & Joshi, K.S. (2015) Studies on fragrance delivery from inorganic nanocontainers: encapsulation, release and modeling studies. Journal of The Institution of Engineers (India): Series E, 96 (1), 19.Google Scholar
Guo, M., Wang, A., Muhammad, F., Qi, W., Ren, H., Guo, Y. & Zhu, G. (2012) Halloysite nanotubes, a multifunctional nanovehicle for anticancer drug delivery. Chinese Journal of Chemistry, 30, 21152120.10.1002/cjoc.201200657Google Scholar
Hartwig, D.D., Bacelo, K.L., Oliveira, T.L., Schuch, R., Seixas, F.K., Collares, T., Rodrigues, O., Hartleben, C.P. & Dellagostin, O.A. (2015) The use of halloysite clay and carboxyl-functionalised multi-walled carbon nanotubes for recombinant LipL32 antigen delivery enhanced the IgG response. Memórias do Instituto Oswaldo Cruz, 110, 134137.10.1590/0074-02760140276Google Scholar
Hemmatpour, H., Haddadi-Asl, Y. & Roghani-Mamaqani, H. (2015) Synthesis of pH-sensitive poly (N, N-dimethylaminoethyl methacrylate)-grafted halloysite nanotubes for adsorption and controlled release of DPH and DS drugs. Polymer, 65, 143153.10.1016/j.polymer.2015.03.067Google Scholar
Hughes, A.D. & King, M.R. (2010) Use of naturally occurring halloysite nanotubes for enhanced capture of flowing cells. Langmuir, 26, 1215512164.10.1021/la101179yGoogle Scholar
Hughes, A.D., Mattison, J., Western, L.T., Powderly, J.D., Greene, B.T. & King, M.R. (2012) Microtube device for selectin-mediated capture of viable circulating tumor cells from blood. Clinical Chemistry, 58, 846853.10.1373/clinchem.2011.176669Google Scholar
Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D. & Delvaux, B. (2005) Halloysite clay minerals — a review. Clay Minerals, 40, 383426.10.1180/0009855054040180Google Scholar
Kamble, R., Ghag, M., Gaikawad, S. & Panda, B.K. (2012) Halloysite nanotubes and applications: a review. Journal of Advanced Scientific Research, 3, 2529.Google Scholar
Kelly, H., Deasy, P., Ziaka, E. & Claffey, N. (2004) Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis. International Journal of Pharmaceutics, 274, 167183.10.1016/j.ijpharm.2004.01.019Google Scholar
Kommireddy, D.S., Dinesh, S., Shashikanth, M.S., Yuri, M.L. & David, K.M. (2006) Stem cell attachment to layer-by-layer assembled TiO2 nanoparticle thin films. Biomaterials, 27, 4296303.10.1016/j.biomaterials.2006.03.042Google Scholar
Krejčová, K., Deasy, P. & Rabišková, M. (2012) Diclofenac sodium entrapment and release from halloysite nanotubules. Ceska a Slovenska Farmacie: casopisCeske farmaceuticke spolecnosti a Slovenske farm-aceuticke spolecnosti, 62, 2834.Google Scholar
Lee, S.Y. & Kim, S.J. (2002) Adsorption of naphthalene by HDTMA modified kaolinite and halloysite. Applied Clay Science, 22, 5563.10.1016/S0169-1317(02)00113-8Google Scholar
Levis, S. & Deasy, P. (2002) Characterisation of halloysite for use as a microtubular drug delivery system. InternationalJournal of Pharmaceutics, 243, 125134.Google Scholar
Levis, S. & Deasy, P. (2003) Use of coated microtubular halloysite for the sustained release of diltiazem hydrochloride and propranolol hydrochloride. InternationalJournal of Pharmaceutics, 253, 145157.Google Scholar
Lvov, Y. & Abdullayev, E. (2013) Functional polymer-clay nanotube composites with sustained release of chemical agents. Progress in Polymer Science, 38, 16901719.10.1016/j.progpolymsci.2013.05.009Google Scholar
Lvov, Y., Aerov, A. & Fakhrullin, R. (2014) Clay nanotube encapsulation for functional biocomposites. Advances in Colloid and Interface Science, 207, 189198.10.1016/j.cis.2013.10.006Google Scholar
MacEwan, D.M.C. (1947) The nomenclature of the halloysite minerals. Mineralogical Magazine, 28, 364.10.1180/minmag.1947.028.196.08Google Scholar
Machado, G.S., de Freitas Castro, K.A.D., Wypych, F. & Nakagaki, S. (2008) Immobilization of metallopor-phyrins into nanotubes of natural halloysite toward selective catalysts for oxidation reactions. Journal of Molecular Catalysis A: Chemical, 283, 99107.10.1016/j.molcata.2007.12.009Google Scholar
Mitchell, M.J., Chen, C.S., Ponmudi, V., Hughes, A.D. & King, M.R. (2012) E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells. Journal of Controlled Release, 160, 609617.CrossRefGoogle ScholarPubMed
Pattekari, P., Zhang, Z., Zhang, X., Levchenko, T., Torchilin, V. & Lvov Y (2011) Top-down and bottom-up approaches in production of aqueous nanocolloids of piclitaxel. Physical Chemistry Chemical Physics, 13, 90149019.Google Scholar
Price, R., Gaber, B. & Lvov, Y. (2001) In-vitro release characteristics of tetracycline HCl, khellin and nico-tinamide adenine dineucleotide from halloysite; a cylindrical mineral. Journal of Microencapsulation, 18, 713722.Google Scholar
Rao, K.M., Nagappan, S., Seo, D.J. & Ha, C.S. (2014) pH sensitive halloysite-sodium hyaluronate/poly (hydro-xyethyl methacrylate) nanocomposites for colon cancer drug delivery. Applied Clay Science, 97, 3342.10.1016/j.clay.2014.06.002Google Scholar
Robertson, R.H. (1955) Formation of clay minerals. Clay Minerals Bulletin, 2, 304306.10.1180/claymin.1955.002.14.02Google Scholar
Shchukin, D.G., Sukhorukov, G.B., Price, R.R. & Lvov, Y.M. (2005) Halloysite nanotubes as biomimetic nanoreactors. Small, 1, 510513.10.1002/smll.200400120Google Scholar
Shi, Y.F., Tian, Z., Zhang, Y., Shen, H.B. & Jia, N.Q. (2011) Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides. Nanoscale Research Letters, 6, 17.10.1186/1556-276X-6-608Google Scholar
Singh, D., Dubey, P., Pradhan, M. & Singh, M.R. (2013) Ceramic nanocarriers: versatile nanosystem for protein and peptide delivery. Expert Opinion on Drug Delivery, 10, 241259.Google Scholar
Soloperto, G., Conversano, F., Greco, A., Casciaro, E., Casciaro, S., Ragusa, A., Leporatti, S. & Lay-Ekuakille, A. (2013) Assessment of the enhancement potential of halloysite nanotubes for echographic imaging. Medical Measurements and Applications Proceedings (MeMeA), 2013 IEEE International Symposium on, IEEE.Google Scholar
Suh, Y., Kil, D., Chung, K., Abdullayev, E., Lvov, Y. & Mongayt, D. (2011) Natural nanocontainer for the controlled delivery of glycerol as a moisturizing agent. Journal of Nanoscience and Nanotechnology, 11, 661665.Google Scholar
Suh, Y., Heo, Y.M., Kil, D.S. & Cho, S.W. (2013) Method for Preparing Microtubular Halloysite Nanopowders, US 8540957.Google Scholar
Tan, D., Yuan, P., Annabi-Bergaya, F., Yu, H., Liu, D., Liu, H. & He, H. (2013) Natural halloysite nanotubes as mesoporous carriers for the loading of ibuprofen. Microporous and Mesoporous Materials, 179, 8998.10.1016/j.micromeso.2013.05.007Google Scholar
Tan, D., Yuan, P., Annabi-Bergaya, F., Liu, D., Wang, L., Liu, H. & He, H. (2014) Loading and in vitro release of ibuprofen in tubular halloysite. Applied Clay Science, 96, 5055.10.1016/j.clay.2014.01.018Google Scholar
Veerabadran, N.G., Price, R.R. & Lvov, Y.M. (2007) Clay nanotubes for encapsulation and sustained release of drugs. Nano, 2, 115120.10.1142/S1793292007000441Google Scholar
Veerabadran, N.G., Mongayt, D., Torchilin, V., Price, R.R. & Lvov, Y.M. (2009) Organized shells on clay nanotubes for controlled release of macromolecules. Macromolecular Rapid Communications, 30, 99103.10.1002/marc.200800510CrossRefGoogle ScholarPubMed
Vergaro, V., Abdullayev, E., Zeitoun, A., Giovinazzo, G., Santino, A., Cingolani, R., Lvov, Y.M. & Leporatti, S. (2008) Halloysite clay nanotubes: characterization, biocompatibility and use as drug carriers. Journal of Microencapsulation. 25, 376.Google Scholar
Vergaro, V., Abdullayev, E., Lvov, Y.M., Zeitoun, A., Cingolani, R., Rinaldi, R. & Leporatti, S. (2010) Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules, 11, 820826.10.1021/bm9014446Google Scholar
Vergaro, V., Scarlino, F., Bellomo, C., Rinaldi, R., Vergara, D., Maffia, M., Baldassarre, F., Giannelli, G., Zhang, X. & Lvov, Y.M. (2011) Drug-loaded polyelectrolyte microcapsules for sustained targeting of cancer cells. Advanced Drug Delivery Reviews, 63, 847864.10.1016/j.addr.2011.05.007Google Scholar
Vergaro, V., Lvov, Y.M. & Leporatti, S. (2012) Halloysite clay nanotubes for resveratrol delivery to cancer cells. Macromolecular Bioscience, 12, 12651271.10.1002/mabi.201200121Google Scholar
Viseras, M.T., Aguzzi, C., Cerezo, P., Viseras, C. & Valenzuela, C. (2008) Equilibrium and kinetics of 5-aminosalicylic acid adsorption by halloysite. Microporous and Mesoporous Materials, 108, 112116.10.1016/j.micromeso.2007.03.033CrossRefGoogle Scholar
Viseras, M.T., Aguzzi, C., Cerezo, P., Cultrone, G. & Viseras, C. (2009) Supramolecular structure of 5-aminosaly-cilic acid/halloysite composites. Journal of Microencapsulation, 26, 279286.10.1080/02652040802312499Google Scholar
Wang, Q., Zhang, J., Zheng, Y. & Wang, A. (2014) Adsorption and release of ofloxacin from acid-and heat-treated halloysite. Colloids and Surfaces B: Biointerfaces, 113, 5158.10.1016/j.colsurfb.2013.08.036Google Scholar
Wang, H., Zhao, X., Wang, S., Tao, S., Ai, N. & Wang, Y. (2015) Fabrication of enzyme-immobilized halloysite nanotubes for affinity enrichment of lipase inhibitors from complex mixtures. Journal of Chromatography A, 1392, 2027.10.1016/j.chroma.2015.03.002Google Scholar
Ward, C.J., Song, S. & Davis, E.W. (2010) Controlled release of tetracycline—HCl from halloysite—polymer composite films. Journal of Nanoscience and Nanotechnology, 10, 66416649.10.1166/jnn.2010.2647Google Scholar
Wei, W., Minullina, R., Abdullayev, E., Fakhrullin, R., Mills, D. & Lvov, Y. (2014) Enhanced efficiency of antiseptics with sustained release from clay nanotubes. RSC Advances, 4, 488494.Google Scholar
Yuan, P., Southon, P.D., Liu, Z. & Kepert, C.J. (2012) Organosilane functionalization of halloysite nano-tubes for enhanced loading and controlled release. Nanotechnology, 23, 375705.Google Scholar
Yuan, P., Tan, D., & Annabi-Bergay, F. (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science, 112, 7593.10.1016/j.clay.2015.05.001Google Scholar
Zhai, R., Zhang, B., Liu, L., Xie, Y., Zhang, H. & Liu, J. (2010) Immobilization of enzyme biocatalyst on natural halloysite nanotubes. Catalysis Communications, 12, 259263.10.1016/j.catcom.2010.09.030Google Scholar