Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T08:13:48.772Z Has data issue: false hasContentIssue false

Grey Oxisol from the Jequitinhonha Valley, Minas Gerais, Brazil: a conceptual challenge to the soil classification system?

Published online by Cambridge University Press:  02 January 2018

A. C. Silva
Affiliation:
Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), 39100-000 Diamantina, Minas Gerais, Brazil
E. Murad*
Affiliation:
Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), 39100-000 Diamantina, Minas Gerais, Brazil
J. D. Fabris
Affiliation:
Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), 39100-000 Diamantina, Minas Gerais, Brazil
S. De Souza
Affiliation:
Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), 39100-000 Diamantina, Minas Gerais, Brazil
M. J . Mendes Pires
Affiliation:
Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), 39100-000 Diamantina, Minas Gerais, Brazil
M. C. Pereira
Affiliation:
Instituto de Ciência, Engenharia e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), 39803-371 Teófilo Otoni, Minas Gerais, Brazil
A. O. Guimarães
Affiliation:
Universidade Estadual do Norte Fluminense (UENF), 28013-600 Campos dos Goytacazes, Rio de Janeiro, Brazil
H. Vargas
Affiliation:
Universidade Estadual do Norte Fluminense (UENF), 28013-600 Campos dos Goytacazes, Rio de Janeiro, Brazil
J . D. Ardisson
Affiliation:
Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), 31270-901 Belo Horizonte, Minas Gerais, Brazil

Abstract

The upper Jequitinhonha Valley is located within the Serra do Espinhaço Meridional mountain range in the State of Minas Gerais, Brazil. The topography is flat or gently undulating with large flat areas known as chapadas (‘high plains’) that are dissected by rivers forming swamps known locally as veredas (‘paths’). The present study is concerned mainly with a representative toposequence in the watershed of the Lagoa do Leandro vereda, a swamp near the city of Minas Novas on a chapada of the highlands of the Alto (Upper) Jequitinhonha region.

The soils of this sequence were studied by a variety of physical and chemical techniques, including Mössbauer, electron spin resonance (ESR) and photoacoustic (PAS) spectroscopies, as well as X-ray diffraction (XRD) and carbon isotope data. Mössbauer spectra of the silt fraction of a grey Xanthic Haplustox (Munsell 10YR 3/2) from the Lagoa do Leandro vereda, referred to here as a ‘Grey Haplustox’ (‘LAC’), proved the existence of Fe2+- and Fe3+-bearing components. Photoacoustic spectroscopy confirmed the presence of Fe2+, as shown by Mössbauer spectroscopy, probably in an octahedrally coordinated site, but the principal optical absorption bands are due to different Fe3+ sites. A ferrimagnetic contribution and three other paramagnetic lines attributed to Fe3+ and Ti3+ were demonstrated by means of ESR. The ESR and PAS results are thus in agreement with the chemical composition and Mössbauer spectroscopy, allowing a detailed characterization of the mineralogy of this silt.

Carbon isotope data indicate the climate to have varied during the past: awetter climate in the Pleistocene, with drier phases in the Late Pleistocene and Holocene, and again a more humid climate 1200 years ago. δ13C data indicate the C3 scrubland vegetation to have occupied the bottom of the vereda in the past (Bispo & Silva, 2014).

Greyish Oxisols that consist chiefly of phyllosilicate minerals of the kaolinite group (which are usually associated with binary oxides and hydroxides) are of common occurrence in tropical soils resulting from leaching and precipitation. Such Oxisols of greyish appearance and similar mineralogy have been described elsewhere from Brazil and, for example, from India. Such soils are therefore proposed here as a new hierarchical level of the Soil Classification System.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ab'Saber, A.N. (2000) The natural organization of Brazilian inter- and subtropical landscapes. Revista do Instituto Geológico, 21, 5770.Google Scholar
Alleoni, L.R.F. & Camargo, O.A. (1994) Pontos de efeito salino nulo de Latossolos Ácricos. Revista Brasileira de Ciência do Solo, 18, 175180.Google Scholar
Alvim, P.T. & Kozlowski, T.T. (1977) Ecophysiology of Tropical Crops. Academic Press Inc., London, 490 pp.Google Scholar
Bailey, S.W., Brindley, G.W., Fanning, D.S., Kodama, H. & Martin, R. (1984) Report of The Clay Minerals Society Nomenclature Committee for 1982 and 1983. Clays and Clay Minerals, 32, 239240.Google Scholar
Barrón, V & Torrent, J. (2002) Evidence for a simple pathway to maghemite in Earth and Mars soils. Geochimica et Cosmochimica Acta, 66, 2801—2806.Google Scholar
Bish, D.L. & Von Dreele, R.B. (1989) Rietveld refinement of non-hydrogen atomic positions in kaolinite. Clays and Clay Minerals, 37, 289296.Google Scholar
Bispo, F.A.B. & Silva, A.C. (2014) Solos de vereda do alto Vale do Jequitinhonha — Minas Gerais — Brasil: testemunho de mudanças paleoambientais. Extended Abstract, 20th Latin-American Congress and 16th Peruvian Congress of Soil Science. Cusco, Peru.Google Scholar
Bispo, F.H.A., Silva, A.C. & Torrado P.V (2011a) Highlands of the upper Jequitinhonha valley, Brazil. I — characterization and classification. Revista Brasileira de Ciência do Solo, 35, 10691080.Google Scholar
Bispo, F.H.A., Silva, A.C., Vidal Torrado, P. & Souza Junior, V.S. (2011b) Highlands of the upper Jequitinhonha valley, Brazil: II - Mineralogy, micromorphology, and landscape evolution. Revista Brasileira de Ciência do Solo, 35, 10811091.Google Scholar
van, Breemen N. & Buurman, P. (2002) Soil Formation, 2ndedition. Kluwer Academic, Dordrecht, The Netherlands, 404 pp.Google Scholar
Brindley, G.W. (1961) Kaolin, serpentine and kindred minerals. Pp. 51—131 in: The X-ray Identification and Crystal Structures of Clay Minerals (G. Brown, editor). The Mineralogical Society, London.Google Scholar
T, Castner Jr., Newell, G.S., Holton, W.C. & Slichter, C.P. (1960) Note on the paramagnetic resonance of iron in glass. Journal of Chemical Physics, 32, 668673.Google Scholar
Cheburkin, A.K. & Shotyk, W. (1996) An energy-dispersive miniprobe multielement analyzer (EMMA) for direct analysis of P. and other trace elements in peats. Fresenius’ Journal of Analytical Chemistry, 354, 688691.Google Scholar
Coelho, M.R., Vidal-Torrado, P. & Ladeira F.S.B. (2001) Macro e micromorfologia de ferricretes nodulares desenvolvidos de Arenito do Grupo Bauru, Formação Adamantina. Revista Brasileira de Ciência do Solo, 25, 371385.Google Scholar
Costa-Milanez, C.B., Lourenço-Silva, G., Castro P.T.A., Majer, J.D. & Ribeiro, S.P. (2014) Are ant assemblages of Brazilian veredas characterised by location or habitat type? Brazilian Journal of Biology, 74, 8999.Google Scholar
Dubroeucq, D. & Volkoff, B. (1998) From Oxisols to Spodosols and Histosols: evolution of the soil mantles in the Rio Negro basin (Amazonia). Catena, 32, 245280.Google Scholar
Deer, W.A., Howie RA. & Zussman, J. (2013) An Introduction to the Rock-Forming Minerals, 3rd edition. The Mineralogical Society, London.Google Scholar
EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária (1997) Centro Nacional de Pesquisa de Solos. Manual de Métodos de Análise de Solos, 2nd ed., Embrapa Solos, Rio de Janeiro, Brazil, 212 pp.Google Scholar
Ferreira, C.A., Silva, A.C., Vidal-Torrado, P.V. & Rocha, W.W. (2010) Genesis and classification of Oxisols in a highland toposequence of the upper Jequitinhonha valley (MG). Revista Brasileira de Ciência do Solo, 34, 195209.Google Scholar
Gopal, N.O., Narasimhulu K.V & Lakshmana Rao, J. (2004) Optical absorption, EPR, infrared and Raman spectral studies of clinochlore mineral. Journal of Physics and Chemistry of Solids, 65, 18871893.Google Scholar
Gunasekaran, S. & Anbalagan, G. (2008) Optical absorp¬tion and EPR studies on some natural carbonate minerals. Spectrochimica Acta A, 69, 383390.Google Scholar
Hunt, G.R. (1977) Spectral signatures of particulate minerals in the visible and near infrared. Geophysics, 42, 501513.Google Scholar
Iacomi, F., Mardare, D., Grecu, M.N., Macovei, D. & Ioan Vida-Simiti, D. (2007) The influence of the substrate nature on the iron repartition in the titania matrix. Surface Science, 601, 26922695.Google Scholar
IUSS Working Group WRB (2014) World Reference Base for Soil Resources 2014. International soil classifica¬tion system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.Google Scholar
Kämpf, N. & Curi, N. (2003) Argilominerais em solos brasileiros. Tópicos em ciência do solo. Viçosa, MG. Sociedade Brasileira de Ciência do Solo, 3, 1—54Google Scholar
Karickhoff, S.W & Bailey, G.W. (1973) Optical absorption spectra of clay minerals. Clays and Clay Minerals, 21, 5970.Google Scholar
Ker, J.C (1998) Latossolos do Brasil: Uma revisão. Geonomos, 5, 17—40.Google Scholar
Ker, J.C., Carvalho Filho, A., Oliveira, V.C. & Santos, H.G., editors. (2005) Reunião Nacional de Correlação de Solos — MG (VIIRCC). Guia de excursão. Sociedade Brasileira de Ciência do Solo. Universidade Federal de Viçosa, Viçosa - MG, 3944.Google Scholar
Kohyama, N., Fukushima, K. & Fukami, A. (1978) Observation of the hydrated form of tubular halloysite by an electron microscope equipped with an environ¬mental cell. Clays and Clay Minerals, 26, 25-40.Google Scholar
Komusiriski, J., Stoch, L. & Dubiel, S.M. (1981) Application of electron paramagnetic resonance and Mössbauer spectroscopy in the investigation of kaolinite-group minerals. Clays and Clay Minerals, 29, 23—30.Google Scholar
Lutterotti, L. (2010) Total pattern fitting for the combined size—strain—stress—texture determination in thin film diffraction. Nuclear Instruments and Methods in Physics Research Section B. Beam Interactions with Materials and Atoms, 268, 334340.Google Scholar
Malengreau, N., Muller, J.P. & Calas, G. (1994) Fe-speciation in kaolins: a diffuse reflectance study. Clays and Clay Minerals, 42, 137147.Google Scholar
Manhães, R.S.T. Auler, L.T., Sthel, M.S., Alexandra, I. Massunaga M.S.O., Carrió J.G., dos Santos, D.R., da Silva, E.C., Garcia-Quiroz, A. & Vargas, H. (2003) Soil characterisation using X-ray diffraction, photoacoustic spectroscopy and electron paramagnetic resonance. Applied Clay Science, 21, 303311.Google Scholar
McKeague I, A. & Day, J.H. (1966) Dithionite and oxalate extractable F. and A. as aids in differentiating various classes of soils. Canadian Journal of Soil Science, 46, 1322.Google Scholar
Mehra, O.P. & Jackson, M.L. (1960) Iron oxide removal from soils and clay by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317327.Google Scholar
Mestdagh, M.M., Vielvoye, L. & Herbillon, A.J. (1980) Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content. Clay Minerals, 15, 113.Google Scholar
Mota, L., Toledo, R., Faria, R.T Jr. , da Silva E.C., Vargas, H. & Delgadillo-Holtfort, I. (2009) Thermally treated soil clays as ceramic raw materials: characterization by X-ray diffraction, photoacoustic spectroscopy and electron spin resonance. Applied Clay Science, 43, 243—247.Google Scholar
Murad, E. & Cashion, J. (2004) Mössbauer Spectroscopy of Environmental Materials and their Industrial Utilization. Kluwer Academic Publishers, Boston, Massachusetts, USA, 418 pp.Google Scholar
Murad, E. & Wagner, U. (1991) Mössbauer spectra of kaolinite, halloysite and the firing products of kaolinite: new results and a reappraisal of published work. Neues Jahrbuch für Mineralogie, Abhandlungen, 162, 281309.Google Scholar
Murad, E. & Wagner, U. (1994) The Mössbauer spectrum of illite. Clay Minerals, 29, 110.Google Scholar
Oliveira, J.B., Resende, M. & Curi, N. (1991) Caracterização e classificação de Latossolos variação una e de solos afins da região de Guaíra, SP. Revista Brasileira de Ciência do Solo, 15, 207218.Google Scholar
Orton, J.W (1959) Paramagnetic resonance data. Reports on Progress in Physics, 22, 204—240.Google Scholar
Pedrosa-Soares, A.C., Noce, C.M., Vida, P., Monteiro R.L. B.P. & Leonardos, O.H. (1992) Towards a new tectonic model for the Late Proterozoic Araçuaí (SE Brazil) — West Congolian (SW Africa) belt. Journal of South American Earth Sciences, 6, 33—47.Google Scholar
Peterschmitt, E., Fritsch, E., Rajot, J.L. & Herbillon, A.J. (1996) Yellowing, bleaching and ferritisation pro¬cesses in soil mantle of the Western Ghâts, South India. Geoderma, 74, 235253.Google Scholar
Resende, M., Carmo, D.N., Silva T.C.A., Batista, R.B. & Rocha, D. (1980) Levantamento de reconhecimento, com detalhes, de solos de chapadas do alto Jequitinhonha. Universidade Federal de Viçosa, Viçosa, MG, 133 pp.Google Scholar
Schaefer, C.E.G.R., Fabris, J.D. & Ker, J.C. (2008) Minerals in the clay fraction of Brazilian Latosols (Oxisols): a review. Clay Minerals, 43, 137154.Google Scholar
Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung. Zeitschrift für Pflanzenernährung und Bodenkunde, 105, 194202.Google Scholar
Scorzelli, R.B., Bertolino, L.C., Luz, A.B., Duttine, M., Silva F.A.N.G. & Munyaco, P. (2008) Spectroscopic studies of kaolin from different Brazilian regions. Clay Minerals, 43, 129135.Google Scholar
Silva, A.C., Rocha, W.W., Ferreira, C.A., Campos, J.R., Bispo, F.H., A., Romão, R.V & Nunciato, G.V (2010) Levantamento pedológico, determinação da aptidão agrícola e avaliação do risco de erosão das terras da ArcelorMittal Jequitinhonha no Vale do Jequitinhonha - MG. Capelinha - MG, ArcelorMittal Jequitinhonha, 133 pp.Google Scholar
Silva, A.C., Bispo F.H.A., de Souza, S., Ardisson, J.D., Viana A.J.S., Pereira, M.C., Costa, F.R., Murad, E. & Fabris, J.D. (2013) Iron mineralogy of a grey Oxisol from the Jequitinhonha River Basin, Minas Gerais, Brazil. Clay Minerals, 48, 713723.Google Scholar
Soil Survey Staff (1999) Soil Taxonomy: a basic system of soil classification for making and interpreting soil surveys. United States Department of Agriculture -Natural Resources Conservation Service, Agriculture Handbook No. 436. U.S. Government Printing Office, Washington, DC. ftp://ftp-fc.sc.egov.usda.gov/NSSC/ Soil_Taxonomy/tax.pdf (accessed 23.01.2015).Google Scholar
Stucki, J.W. & Kostka, J.E. (2006) Microbial reduction of iron in smectite. Comptes Rendus Geoscience, 338, 468575.Google Scholar
Tan, K.H. (2008) Soils in the Humid Tropics and Monsoon Region of Indonesia. CRC Press, Taylor & Francis Group, Boca Raton, Florida, USA, 556 pp.Google Scholar
Teófilo, F.H.P. & Frota, J.N.E. (1982) Formas de fósforo e sua disponibilidade em solos da região da Ibiapaba-CE. Ciência Agronomica, 13, 61—69.Google Scholar
Ufer, K., Roth, G., Kleeberg, R., Stanjek, H., Dohrmann, R. & Bergmann, J. (2004) Description of X-ray powder pattern of turbostratically disordered layer structures with a Rietveld compatible approach. Zeitschrift für Kristallographie, 219, 519527.Google Scholar