Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T11:40:06.821Z Has data issue: false hasContentIssue false

Fe, Mg and Al distribution in the octahedral sheet of montmorillonites. An infrared study in the OH- bending region

Published online by Cambridge University Press:  09 July 2018

D. Vantelon*
Affiliation:
Laboratoire Environnement et Minéralurgie, UMR 7569 CNRS-INPL, Pôle de l'eau, 15, Avenue du Charmois, 54501 Vandú vre-lès-Nancy Cedex, France
M. Pelletier
Affiliation:
Laboratoire Environnement et Minéralurgie, UMR 7569 CNRS-INPL, Pôle de l'eau, 15, Avenue du Charmois, 54501 Vandú vre-lès-Nancy Cedex, France
L. J. Michot
Affiliation:
Laboratoire Environnement et Minéralurgie, UMR 7569 CNRS-INPL, Pôle de l'eau, 15, Avenue du Charmois, 54501 Vandú vre-lès-Nancy Cedex, France
O. Barres
Affiliation:
Laboratoire Environnement et Minéralurgie, UMR 7569 CNRS-INPL, Pôle de l'eau, 15, Avenue du Charmois, 54501 Vandú vre-lès-Nancy Cedex, France
F. Thomas
Affiliation:
Laboratoire Environnement et Minéralurgie, UMR 7569 CNRS-INPL, Pôle de l'eau, 15, Avenue du Charmois, 54501 Vandú vre-lès-Nancy Cedex, France

Abstract

Ten montmorillonites of different origins with variable Fe contents were analysed using transmission IR spectroscopy. Special attention was devoted to the OH-bending region to obtain information about the distribution of octahedral cations. For low to medium Fe contents (≤0.56 per Si8 formula unit), a linear relationship between the position of the δAlFeOH band and Fe content was observed. Such correlation might be explained by changes in the cis-trans occupancy of Fe in the octahedral sheet. Deconvolution of the OH-bending domain allows us to discriminate three components (δAlAlOH, δAlMgOH and δAlFeOH) which are correlated with cation abundances derived from chemical analysis. The relative area of each band can then be compared with theoretical areas calculated assuming a fully random distribution of cations in the octahedral sheet. Using such treatment, eight of the 10 montmorillonites studied presented a nearly randomized octahedral distribution. The two samples from Wyoming were clearly different as they exhibited a strong ordering tendency.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berend, I. (1991) Les mécanismes d’hydratation de montmorillonites homoioniques pour des pressions relatives inférieures à 0.95. PhD thesis, INPL Nancy, France.Google Scholar
Besson, G. & Drits, V.A. (1997a) Refined relationships between chemical composition of dioctahedral finegrained mica minerals and their infrared spectra within the OH stretching region. Part I: Identification of the OH stretching bands. Clays Clay Miner. 45, 158–169.Google Scholar
Besson, G. & Drits, V.A. (1997b) Refined relationships between chemical composition of dioctahedral finegrained micaceous minerals and their infrared spectra within the OH stretching region. Part II: The main factors affecting OH vibrations and quantitat ive analysis. Clays Clay Miner. 45, 170–183.Google Scholar
Bishop, J.L., Pieters, C.M. & Burns, R.G. (1993) Reflectance and Mössbauer spectroscopy of ferrihydrite- montmorillonite assemblages as Mars soil analog minerals. Geochim. Cosmochim. Acta, 57, 4583–4595.CrossRefGoogle Scholar
Bishop, J.L., Murad, E., Madejova, J., Komadel, P., Wagner, U. & Scheinost, A. (1999) Visible, Mössbauer and infrared spectroscopy of dioctahedral smectites: structural analyses of the Fe-bearing smectites Sampor, SWy1 and Swa-1. 11th Int. Clay Conf., Adelaide, 413–419.Google Scholar
Calvet, R. & Prost, R. (1971) Cation migration into empty octahedral sites and surface properties of clays. Clays Clay Miner. 19, 175–186.Google Scholar
Cariatti, F., Erre, L., Micera, G., Piu, P. & Gessa, C. (1983) Effects of layer charge on the near infrared spectra of water molecules in smectites and vermiculites. Clays Clay Miner. 31, 447–449.Google Scholar
Craciun, C. (1984) Influence of the Fe3+ for Al3+ octahedral substitutions on the IR spectra of montmorillonite minerals. Spectroscopy Letters, 17, 579–590.CrossRefGoogle Scholar
Cuadros, J. & Altaner, S.P. (1998) Compositional and structural features of the octahedral sheet in mixedlayer illite-smectite from bentonites. Eur. J. Miner. 10, 111–124.Google Scholar
Cuadros, J., Sainz-Diaz, C.I., Ramirez, R. & Hernandez-Laguna, A. (1999) Analysis of Fe segregation in the octahedral sheet of bentonitic illite-smectite by means of FTIR, 27Al MAS NMR and reverse Monte Carlo simulations. Am. J. Sci. 299, 289–308.CrossRefGoogle Scholar
Decarreau, A., Grauby, O. & Petit, S. (1992) The actual distribution of octahedral cations in 2:1 clay minerals: results from clay synthesis. Appl. Clay Sci. 7, 147–167.Google Scholar
Delineau, T. (1994) Les argiles kaoliniques du bassin des Charentes (France): Analyses typologiques, cristallochimiques, spéciation du fer et applications. PhD thesis, INPL Nancy, France.Google Scholar
Drits, V.A., Besson, G. & Muller, F. (1995) An improved model for structural transformations of heat-treated aluminous dioctahedral 2:1 layer silicates. Clays Clay Miner. 43, 718–731.Google Scholar
Drits, V.A., Dainyak, L.G., Muller, F., Besson, G. & Manceau, A. (1997) Isomorphous cation distribution in celadonites, glauconites and Fe-illites determined by infrared, Mössbauer and EXAFS spectroscopies. Clay Miner. 32, 153–179.Google Scholar
Emmerich, K., Madsen, F.T. & Kahr, G. (1999) Dehydroxylat ion behavior of heat- treated and steam-treated homionic cis-vacant montmorillonites. Clays Clay Miner. 47, 591–604.Google Scholar
Farmer, V.C. (1974) Layer silicates. Pp. 331–363 in. Infrared Spectra of Minerals (V.C. Farmer, editor). Monograph 4, Mineralogical Society, London.Google Scholar
Farmer, V.C. & Russell, J.D. (1964) The infrared spectra of laye r sil icates. Spect rochim. Acta, 20, 1149–1173.Google Scholar
Fripiat, J.J. (1960) Applications de la spectroscopie infrarouge à l’étude des minéraux argileux. Bull. Gr. Franç. Argiles, XII, 25–41.Google Scholar
Gaite, J.M., Ermakoff, P., Allard, Th. & Muller, J.P. (1997) Paramagnetic Fe3+: a sensitive probe for disorder in kaolinites. Clays Clay Miner. 45, 496–505.Google Scholar
Gates, W.P., Jaunet, A.M., Tessier, D., Cole, M.A., Wilkinson, H.T. & Stucki, J.W. (1998) Swelling and texture of iron-bearing smectites reduced by bacteria. Clays Clay Miner. 46, 487–497.Google Scholar
Goodman, B.A., Russell, J.D., Fraser, A.R. & Woodhams, F.W.D. (1976) A Mössbauer and IR spectroscopic study of the structure of nontronite. Clays Clay Miner. 24, 53–59.Google Scholar
Komadel, P., Madejova, J. & Stucki, J.W. (1995) Reduction and reoxidation of nontronite: questions of reversibility. Clays Clay Miner. 43, 105–110.CrossRefGoogle Scholar
Komadel, P., Madejova, J. & Stucki, J.W. (1999) Partial stabilization of Fe(II) in reduced ferruginous smectite by Li fixation. Clays Clay Miner. 47, 458–465.Google Scholar
Madejová, J., Komadel, P. & Čičel, B. (1994) Infrared study of octahedral site populations in smectites. Clay Miner. 29, 319–326.Google Scholar
Murad, E. (1987) Mössbauer spectra of nontronites: structural implications and characterization of associated iron oxides. Z. Pflanzenernähr. Bodenk. 150, 279–285.Google Scholar
Pelletier, M. (1999) Application de la spectroscopie infrarouge à l’étude de l’organisation de l’eau aux interfaces: le cas des phyllosilicates 2:1. PhD thesis, INPL Nancy, France.Google Scholar
Petit, S., Prot, T., Decarreau, A., Mosser, C. & Toledo-Groke, M.C. (1992) Crystallochemical study of a population of particles in smectites from a lateritic weathering profile. Clays Clay Miner. 40, 436–445.Google Scholar
Petit, S., Robert, J.L., Decarreau, A., Besson, G., Grauby, O. & Martin, F. (1995) Contribution of spectroscopic methods to 2:1 clay characterization. Pp. 119–147 in. Structure et Transformation des Argiles dans les Champs Pétroliers et Géothermiques. Elf-Aquitaine Production, 19.Google Scholar
Russell, J.D. (1980) On spurious absorption bands in IR spectra of clay minerals. Clay Miner. 15, 205–206.Google Scholar
Russell, J.D. & Fraser, A.R. (1994) Infrared methods. Pp. 11–67 in: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (Wilson, M. J., editor). Chapman & Hall, London.Google Scholar
Slonimskaya, M.V., Besson, G., Dainyak, L.G., Tchoubar, C. & Drits, V.A. (1986) Interpretation of the IR spectra of celadonites and glauconites in the region of OH-stretching frequencies. Clay Miner. 21, 377–388.Google Scholar
Sposito, G., Prost, R. & Gaultier, J.P. (1983) Infrared spectroscopic studies of adsorbed water on reducedcharge Na/Li-montmorillonite. Clays Clay Miner. 31, 9–16.Google Scholar
Stubican, V. & Roy, R. (1961) Isomorphous sustitution and infrared spectra of the layer lattice silicates. Am. Miner. 46, 32–51.Google Scholar
Stucki, J.W., Wu, J., Gan, H., Komadel, P. & Banin, A. (2000) Effects of iron oxidation state and organic cations on dioctahedral smectite hydration. Clays Clay Miner. 48, 290–298.Google Scholar
Tettenhorst, R. (1962) Cation migration in montmorillonites. Am. Miner. 47, 769–773.Google Scholar
Tsipursky, S.I. & Drits, V.A. (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Miner. 19, 177–193.Google Scholar
Vantelon, D., Thomas, F., Pelletier, M., Michot, L.J. & Cases, J.M. (1999) Variability in the colloidal and rheological properties of Na-montmorillonites suspensions: influence of crystal chemistry. Euroclay meeting Abs., Kraków, Poland, 142.Google Scholar