Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T22:56:13.587Z Has data issue: false hasContentIssue false

Experimental pressure and sealing plug as part of the European DOPAS project – deep geological repository plug demonstration

Published online by Cambridge University Press:  02 January 2018

Irena Hanusová*
Affiliation:
SÚRAO, Dlážděná 6, 110 00 Prague 1, Czech Republic
Jiří Svoboda
Affiliation:
Centre of Experimental Geotechnics, Czech Technical University in Prague, Thákurova 7, Prague, Czech Republic
Petr Večerník
Affiliation:
ÚJV Řež, a. s., Hlavní 130, 250 68 Husinec, Řež, Czech Republic
*

Abstract

The objective of the DOPAS international project is to design a sealing-plug system for deep geological repository (DGR) use, to provide detailed plans for the design of such plugs, to test the characteristics of the materials to be used and the construction technology and to install four experimental in situ plugs. The Czech experimental pressure and sealing-plug (EPSP) experiment is being conducted in a rock environment consisting of granitoids at the Josef Regional Underground Research Centre. The concept of the experiment is based primarily on the use of materials and technology available in the Czech Republic and the principal aim is to demonstrate the technical viability and functioning of a pressure-resistant plug located in a future DGR. The completion of the EPSP experiment will contribute towards both the demonstration of how sealing-plug systems behave under real underground conditions and the long-term safety of a future DGR in the Czech Republic.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was originally presented during the session ‘Bentonites linking clay science with technology’, part of the Euroclay 2015 conference held in July 2015 in Edinburgh, UK.

References

Alonso, M.C., Walker, C., Naito, M., Pettersson, S., Puigdomenech, I., Cuñado, M.A., Vuorio, M., Weber, H., Ueda, H. & Fujisaki, K. (2012) Development of an Accurate pH Measurement Methodology for the Pore Fluids ofLowpHCementitious Materials. SKB report R-12-02.Google Scholar
Červinka, R. & Hanuláková, D. (2013) Laboratorní výzkum tlumících, výplňových a konstrukčních materiálu. Geochemické modelování: bentonitová pórová voda. Summary report ÚJV Rež, a. s. 14269, in Czech.Google Scholar
Červinka, R., Vejsadů, J. & Vokál, A. (2012) Uncertainties in the pore water chemistry of compacted bentonite from the Rokle deposit. Pp. 467468 in: Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, 5th International Meeting, 21-25.10.2012, Montpellier, France.Google Scholar
Dixon, D., Hansen, J., Karvonen, T.H., Korkiala-Tanttu, L., Marcos, N. & Sievänen, U. (2013) Underground Disposal Facility Closure Design 2012. Posiva Working Report 2012-09.Google Scholar
Geofond. Dobfis 1-9/34-24, M-SCH-Z/SP-59.Google Scholar
Havlová, V., Holeček, J., Vejsada, J., Večerník, P. & Červinka, R. (2010) Príprava syntetické podzemní vody pro laboratorní experimentální práce. Technical report of Ministry of Industry and Trade of the Czech Republic project no. FR-TI1/367, in Czech.Google Scholar
Klika, Z. & Weiss, Z. (1993) CQPA, Program for Chemical Quantitative Phase Analysis. Central Analytical Laboratory, Technical University of Mining and Metallurgy, Ostrava.Google Scholar
Montes, H.G., Duplay, J., Martinez, L., Escoffier, S. & Rousset, D. (2004) Structural modifications of Callovo-Oxfordian argillite under hydration/dehydra-tion conditions. Applied Clay Science, 25, 187194.Google Scholar
Morávek, P. (1992) Zlato v českém masívu. ČGÚ, Praha, Czech, 245 pp.Google Scholar
Pačes, T. (2010) Výzkum procesůpole vzdálených interakcí HÚ vyhorelého jaderného paliva a vysoce aktivních odpadů. Summary report SÚRAO, in Czech.Google Scholar
Pacovský, J. & Šťástka, J. (2009) Development of sprayed backfill technology. Pp. 523533 in: 7th International Conference on Ecosystems and Sustainable Development, ECOSUD 2009. WIT Transactions on Ecology and the Environment, 122.Google Scholar
Puigdomenech, I. editor (2001) Hydrochemical Stability of Groundwaters Surrounding a Spent Nuclear Fuel Repository in a 100,000 Year Perspective. SKB Technical Report TR-01-28, Stockholm.Google Scholar
Šťástka, J., Svoboda, J. & Smutek, J. (2014) Verification of sprayed clay technology with respect to the geological disposal of radioactive waste. Acta Geodynamica et Geomaterialia, 11, 145152.Google Scholar
SÚRAO (2011) Aktualizace referenčního projektu hlubinného ulozisie radioaktivnich odpadů v hypotetické lokalite. Summary report ÚJV Řež, a.s., in Czech.Google Scholar
Svoboda, J., Vašíček, R., Smutek, J. & Šťástka, J. (2015) Deliverable D3.15 - Detail design of EPSP plug. DOPAS project FP7 EURATOM, no. 323273; Czech Technical University in Prague.Google Scholar
Vašíček, R., Levorová, M., Hausmannová, L., Šťástka, J., Večerník, P., Trpkošová, D. & Gondolli, J. (2014) Deliverable D3.17 - Interim Results of EPSP Laboratory Testing. DOPAS project FP7 EURATOM, no. 323273; Czech Technical University in Prague.Google Scholar
White, M., Doudou, S. & Neall, F. (2013) D2.1 - Design Bases and Criteria. DOPAS project FP7 EURATOM, no. 323273; Galson Sciences Limited.Google Scholar