Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T21:39:53.832Z Has data issue: false hasContentIssue false

Experimental alteration of Mg-vermiculite under hydrothermal conditions: formation of mixed-layered saponite-chlorite minerals

Published online by Cambridge University Press:  09 July 2018

R. Mosser-Ruck*
Affiliation:
CNRS, UMR 7566 Géologie et Gestion des Ressources minérales et énergétiques – CREGU et Université Henri Poincaré, BP 239-54506 Vandoeuvre-lès-Nancy cedex, France
*
*E-mail: regine.ruck@g2r.uhp-nancy.fr

Abstract

The hydrothermal reactivity of a Mg-vermiculite from Santa Olalla (Spain) was studied experimentally at 150 and 300ºC, 75 and 100 bars, respectively, in (Na,K,Ca,Mg) chloride and sulphate solutions (liquid/solid ratio = 10). The formation of mixed-layer clays is demonstrated by FT-IR spectroscopy, X-ray diffraction (XRD) and electron microprobe. The gradual decrease of the 3220 cm–1 infrared band intensity, characteristic of free water, is interpretated as the dehydration of the interlayer Mg cation of the vermiculite. The presence of ‘brucite type’ sheets is also observed by the increase of 3555 cm–1 and 3420 cm–1 band intensities. The XRD results show that run products are able to expand when glycolated. Microprobe analyses document the decrease of IVSi content and a significant enrichment in Mg in the run products. The formation of a mixed-layer clay comprising saponite and chlorite layers is proposed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aagaard, P., Jahren, J.S., Haestad, A.O., Nilsen, O. & Ramm, M. (2000) Formation of grain-coating chlorite in sandstones. Laboratory synthesize. vs. natural occurrences. Clay Minerals, 35, 261269.Google Scholar
Barshad, I. (1950) The effect of interlayer cations on the expansion of the mica type of crystal lattice. American Mineralogist, 35, 225238.Google Scholar
Berner, R.A. (1980) Early Diagenesis: a Theoretical Approach. Princeton University Press, Princeton, New Jersey, USA.CrossRefGoogle Scholar
Bettison, L. & Schiffman, P. (1988) Compositional and structural variations of phyllosilicates from the Point Sal ophiolite, California. American Mineralogist, 73, 6276.Google Scholar
Bettison-Varga, L. & Mackinnon, I.D.R. (1997) The role of randomly mixed-layered chlorite/smectite in the transformation of smectite to chlorite. Clays and Clay Minerals, 45, 506516.CrossRefGoogle Scholar
Bevins, R.E., Robinson, D. & Rowbotham, G. (1991) Compositional variations in mafic phyllosilicates from regional low-grade metabasites and application of the chlorit e geothermometer. Journal of Metamorphic Geology, 9, 711721.CrossRefGoogle Scholar
Bobrov, B.S., Gorbatyy Yu.Ye. & Epel’baum, M.B. (1970) Dehydration of vermiculite. Geochemistry International, 7, 530535.Google Scholar
Buatier, M.D., Früh-Green, G.L. & Karpoff, A.M. (1995) Mechanisms of Mg-phyllosilicate formation in a hydrothermal system at a sedimented ridge (Middle Valley, Juan de Fuca). Contributions to Mineralogy and Petrology, 122, 134151.Google Scholar
Caillère, S., Henin, S. & Rautureau, M. (1982) Minéralogie des argiles. I: Structure et propriétés physico-chimiques. II: Classification et nomenclature. Actualités scientifiques et agronomiques de l’I.N.R.A. Masson, Paris.Google Scholar
Chang, H.K., Mackenzie, F.T. & Schoonmaker, J. (1986) Comparisons between the diagenesis of dioctahedral and trioctahedral smectite, Brasilian offshore basins. Clays and Clay Minerals, 34, 407423.Google Scholar
De la Calle, C. & Suquet, H. (1988) Vermiculite. Pp. 455496 in: Hydrous Phyllosilicates(S.W. Bailey, editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.Google Scholar
Drits, V.A., Lindgreen, H., Sakharov, B.A. & Salyn, A.S. (1997) Sequence structure transformation of illitesmectite- vermiculite during diagenesis of Upper Jurassic shales, North Sea. Clay Minerals, 33, 351371.CrossRefGoogle Scholar
Ehrenberg, S.N. (1993) Preservation of anomalously high porosity in deeply buried sandstones by graincoating chlorite. Examples from the Norwegian contin ent al she lf. Amer ican Association of Petroleum Geologists Bulletin, 77, 12601286.Google Scholar
Elie, M. (1994) Effets des conditions temps-température et de la matrice minérale sur l’évolution de matières organiques de type II et III au cours de la pyrolyse en milieu confiné. PhD thesis, Univ. Nancy I, France.Google Scholar
Guillaume, D., Pironon, J., Ghanbaja, J. & Laurent, P. (2001) Valence determination of iron in clays by electron energy loss spectroscopy. P. 174 in: The 12th International Clay Conference ‘ 2001 a Clay Odyssey’ and 3rd International Symposium on Activated Clays. Bahia Blanca, Argentina.Google Scholar
Helmold, K.P. & Van de Kamp, P.C. (1984) Diagenetic mineralogy and controls on albitization and laumontite formation in Paleogene arkoses, Santa Ynez Mountains, California. Pp. 239276 in: Clastic Diagenesis(McDonald, D.D. & Surdam, R.C., editors). American Associati on of Petroleum Geologists Memoir, 37.Google Scholar
Honeyborn, D.B. (1951) Clay minerals in the Keuper Marl. Clay Minerals Bulletin, 5, 150155.CrossRefGoogle Scholar
Hornibrook, E.R.C. & Longstaffe, F.J. (1996) Berthierine from the Lower Cretaceous Clearwater formation, Alberta, Canada. Clays and Clay Minerals, 44, 121.Google Scholar
Iijima, A. & Matsumoto, R. (1982) Berthierine and chamosite in coal measures of Japan. Clays and Clay Minerals, 30, 264274.Google Scholar
Inoue, A. (1984) Thermodynamic study of Na-K-Ca exchange reactions in vermiculite. Clays and Clay Minerals, 32, 311319.Google Scholar
Inoue, A. (1987) Conversion of smectite to chlorite by hydrothermal diagenetic alterations, Hokuroku Kuroko mineraliza tion area, Northeast Japan. Proceedings of International Clay Conference, Denver, pp. 158164. The Clay Minerals Society, Bloomington, Indiana, USA.Google Scholar
Inoue, A. & Utada, M. (1991) Smectite-to-chlorite transformation in thermally metamorphosed volcanoclastic rocks in the Kamikita Area, North Honshu, Japan. American Mineralogist, 76, 628649.Google Scholar
Inoue, A., Utada, M., Nagata, H. & Watanabe, T. (1984) Conversion of trioctahedral smectite to interstratified chlorite/smectite in Pliocene acidic pyroclastic sediments of the Ohyu district, Akita prefecture, Japan. Clay Science, 6, 103106.Google Scholar
Justo, A. (1984) Estudio fisico-quimico y mineralogico de vermiculitas de Andalucia y Badajoz.PhD thesis, Univ. Sevilla, Spain.Google Scholar
Kawano, M. & Tomita, K. (1991) Dehydration and rehydration of saponite and vermiculite. Clays and Clay Minerals, 39, 174183.Google Scholar
Le Dred, R., Saehr, D. & Wey, R. (1978) Etude thermodynamique de l’échange d’ions Na-K dans une vermiculite. Comptes Rendus de l’Académie des Sciences de Paris, 286, Série D, 807810.Google Scholar
Luque, F.J., Rodas, M. & Doval, M. (1985) Mineralogia y genesis de los yacimientos de vermiculite de Ojen. Boletín de la Sociedad Española de Mineralogia, 8, 229238.Google Scholar
Martin de Vidales, J.L., Vila, E., Ruiz-Amil, A., De la Calle, C. & Pons, C.H. (1990) Interstratification in Malawi vermiculite. Effect of biionic K-Mg solutions. Clays and Clay Minerals, 38, 513521.Google Scholar
Martin de Vidales, J.L., De la Calle, C. & Pons, C.H. (1991) Interstrafication K-Mg dans les vermiculites. Comportement particulier de la vermiculite de Malawi. Clay Minerals, 26, 571576.CrossRefGoogle Scholar
Meunier, A., Inoue, A. & Beaufort, D. (1991) Chemiographic analysis of trioctahedral smectiteto- chlorite conversion series from the Ohyu caldera, Japan. Clays and Clay Minerals, 39, 409415.Google Scholar
Meunier, A., Lanson, B. & Beaufort, D. (2000) Vermiculitization of smectite interfaces and illite layer growth as a possible dual model for illitesmectite illitization in diagenetic environments: a synthesis. Clay Minerals, 35, 573586.Google Scholar
Pons, C.H., Pozzuoli, A., Rausell-Colom, J.A. & De la Calle, C. (1989) Mécanisme du passage de l’état hydraté à une couche à l’état ‘zéro couche’ d’une vermiculite-Li de Santa Olalla. Clay Minerals, 24, 479494.CrossRefGoogle Scholar
Roy, R. & Romo, L.A. (1957) Weathering studies. 1: New data on vermiculite. Journal of Geology, 65, 603610.Google Scholar
Saehr, D., Le Dred, R. & Wey, R. (1982) Thermodynamic study of cation exchange in a vermiculite with K ions. Proceedi ngs of the International Clay Conference, pp. 133139. Elsevier, Amsterdam.Google Scholar
Schiffman, P. & Staudigel, H. (1995) The smectite to chlorite transition in a fossil seamount hydrothermal system: the basement complex of La Palma, Canary Islands. Journal of Metamorphic Geology, 13, 487498.CrossRefGoogle Scholar
Shau, Y.H., Peacor, D.R. & Essene, E.J. (1990) Corrensite and mixed-layer chlorite/corrensite in metabasalt from northern Taiwan: TEM/AEM, EMPA, XRD, and optical studies. Contributions to Mineralogy and Petrology, 105, 123142.Google Scholar
Shirozu, H. (1980) Cation distribution, sheet thickness, and O-OH space in trioctahedral chlorites – an X-ray and infrared study. Mineralogical Journal(Japan), 10, 1434.Google Scholar
Shirozu, H. (1985) Infrared spectra of trioctahedral chlorites in relation to chemical composition. Clay Science, 6, 167176.Google Scholar
Stephen, I. & MacEwan, D.M.C. (1950a) Swelling chlorites. Geotechnique(London), 2, 8283.CrossRefGoogle Scholar
Stephen, I. & MacEwan, D.M.C. (1950b) Some chloritic clay minerals of unusual type. Clay Minerals Bulletin, 1, 157162.Google Scholar
Suquet, H., Mallard, C., Quarton, M., Dubernat, J. & Pezerat, H. (1984) Etude du biopyribole formé par chauffage des vermiculites magnésiennes. Clay Minerals, 19, 217227.Google Scholar
Van der Marel, H. W. & Beutelspacher, H. (1976) Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures. Elsevier, Amsterdam.Google Scholar
Velasco, F., Casquet, C., Ortega Huertas, M. & Rodrigez Gordillo, J. (1981) Indicio de vermiculita en el skarn magnesico (Aposkarn flogopitico) de la Garrenchosa (Santa Olalla, Huelva). Sociedad Espan˜ ola de Mineralogia, 2, 135149.Google Scholar
Villiéras, F. (1993) Etude des modifications des propriétés du talc et de la chlorite par traitement thermique. PhD thesis, Institut Polytechnique de Lorraine, Nancy, France.Google Scholar
Walker, G.F. (1956) The mechanism of dehydration on Mg-vermiculi te. Clays and Clay Minerals, 4, 101115.Google Scholar
Walker, G.F. (1961) Vermiculite minerals. Pp. 297324 in: The X-ray Identification and Crystal Structure of Clay Minerals(Brown, G., editor). Mineralogical Society, London.Google Scholar