Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T21:24:52.524Z Has data issue: false hasContentIssue false

Exchange selectivity of lanthanide ions in montmorillonite

Published online by Cambridge University Press:  09 July 2018

J. Maza-Rodriguez
Affiliation:
Departamento de Química Inorgánica, Cristalografia y Mineralogia, Universidad de Málaga, Apdo. 59, 29071 Málaga, Spain
P. Olivera-Pastor
Affiliation:
Departamento de Química Inorgánica, Cristalografia y Mineralogia, Universidad de Málaga, Apdo. 59, 29071 Málaga, Spain
S. Bruque
Affiliation:
Departamento de Química Inorgánica, Cristalografia y Mineralogia, Universidad de Málaga, Apdo. 59, 29071 Málaga, Spain
A. Jimenez-Lopez
Affiliation:
Departamento de Química Inorgánica, Cristalografia y Mineralogia, Universidad de Málaga, Apdo. 59, 29071 Málaga, Spain

Abstract

The exchange of Ca2+ and Na+ by tanthanide ions (Ln3+ = Pr3+, Gd3+, Er3+) in montmorillonite was investigated at two different ionic strengths (0·01 and 0·1 mol/kg). Preferential sorption of Ln3+ was observed and variable selectivity coefficients were found depending upon the lanthanide concentration in the solid, and ionic strength. The highest exchange extent of Ln3+ always occurred for the system Na+/Ln3+, but the exchange selectivities of Ln3+ were generally higher in the exchange system Ca2+/Ln3+. Although the relative affinity of montmorillonite for the three lanthanide ions was similar, distinctive behaviour between Pr3+ and the heavier lanthanides, Gd3+ and Er3+, was noted. The study of Ln3+ adsorption in trace amounts showed specific adsorption of lanthanides at high concentrations of Na+ in the external solution and that the exchange stoichiometries in the interlayer regions were 3 : 1 at equilibrium pH = 4.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banin, A. (1968) Ion exchange isotherms of montmorillonite and structure factors affecting them. Israel J. Chem., 6, 27–36.Google Scholar
Bonnot-Courtois, C. & Jaffrezic-Renault, N. (1982) Etudes des echanges entre terres rares et cations interfoliaires de deux argiles. Clay Miner., 17, 409–420.CrossRefGoogle Scholar
Bruque, S., Mozas, T. & Rodriguez, A. (1980) Factors influencing retention of lanthanide ions by montmorillonite. Clay Miner., 15, 413–420.Google Scholar
Frysinger, G.R. & Thomas, H.C. (1960) Adsorption studies on clay minerals VII. Yttrium-cesium and cerium(III)-cesium on montmorillonite. J. Phys. Chem., 64, 224–228.CrossRefGoogle Scholar
Goryushina, V.G., Savvin, S.B. & Romanova, E.V. (1963) Photometric determination of rare earth in ores in Arsenazo III. Zh. Analit. Khim., 18, 1340.Google Scholar
Komarneni, S. & White, W.B. (1983) Hydrothermal reactions of strontium and transuranic simulator elements with clay minerals, zeolites and shales. Am. Miner., 72, 292–298.Google Scholar
Laufer, F., Yariv, S. & Steimberg, M. (1984) The absorption of quadrivalent cerium by kaolinite. Clay Miner., 19, 137–149.CrossRefGoogle Scholar
Marshall, C.E. (1964) The Physical Chemistry and Mineralogy of Soils. John Wiley, New York.Google Scholar
McBride, M.B. (1979) An interpretation of cation selectivity variations in M+-M+ exchange on clays. Clays Clay Miner., 27, 417–422.Google Scholar
McBride, M.B. (1980) Interpretation of the variability of selectivity coefficients for exchange between ions of unequal charge on smectites. Clays Clay Miner., 28, 255–261.Google Scholar
McBride, M.B. & Bloom, F.R. (1977) Adsorption of aluminium by smectite II. An AI3+-Ca2+ exchange model. Soil Sci. Soc. Am. J., 41, 1073–1077.CrossRefGoogle Scholar
Miller, S.E., Heat, G.R. & GonzAlez, R.D. (1982) Effects of temperature on the sorption of lanthanides by montmorillonite. Clays Clay Miner., 30, 111–122.Google Scholar
Olivera Pastor, P., Rodriguez Castellön, E. & Rodriguez, A. (1987) Hydrolysis and selective sorption of lanthanides in vermiculite. Solv. Extr. Ion Exch., 5, 1151–1169.Google Scholar
Olivera Pastor, P., Rodriguez Castellön, E. & Rodriguez Garcia, A. (1988) Uptake of lanthanides by vermiculite. Clays Clay Miner., 36, 68–72.Google Scholar
Pizter, K.S. & Brewer, L. (1961) Thermodynamics(G.N. Lewis & M. Randall, editors) p. 346, McGraw-Hill, New York.Google Scholar
Shabtai, J. (1980) A new class cracking catalysts-acidic forms of cross-linked smectites. U.S. Patent, 4, 238,364,5 pp.Google Scholar
Shainberg, I. & Kemper, W.D. (1966) Electrostatic forces between clay and cations calculated and inferred from electrical conductivity. Clays Clay Miner., 14, 117–132.CrossRefGoogle Scholar
Steinberg, M. & Courtois, C. (1976) Le comportement des terres rares au cours de Talteration et ses consequences. Bull. Soc. Geol. Fr. XVIII, 1320.CrossRefGoogle Scholar
Tiller, K.G. & Hodgson, J.F. (1962) The specific sorption of cobalt and zinc by layer silicates. Clays Clay Miner., 11, 391403.Google Scholar