Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T21:20:40.171Z Has data issue: false hasContentIssue false

Effect of acid treatment on the structure of sepiolite

Published online by Cambridge University Press:  09 July 2018

A. Yebra-Rodríguez*
Affiliation:
InstitutoAndaluz de Ciencias de la Tierra (CSIC-UGR), Campus Fuentenueva, 18071, Granada
J . D. Martín-Ramos
Affiliation:
Departamento de Mineralogía y Petrología, Campus Fuentenueva, 18071, Granada
F. Del Rey
Affiliation:
Departamento de Química Inorgánica, Campus Fuentenueva, 18071, Granada
C. Viseras
Affiliation:
Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Granada, Spain
A. López-Galindo
Affiliation:
InstitutoAndaluz de Ciencias de la Tierra (CSIC-UGR), Campus Fuentenueva, 18071, Granada
*
*E-mail: alberto@ugr.es

Abstract

An ab initio determination of the structure of sepiolite after acid treatment (HCl 0.5 N for 24 h) was carried out using X-ray powder diffraction data. After acid treatment, the sections normal to the a and c axes presented discontinuities, ∼2.25 Å wide, parallel to the (010) plane, with no electronic density maxima, thus suggesting that adjacent planes are joined by van der Waals-like residual links. Partial dissolution was detected on both octahedral and tetrahedral sheets, beginning by breaking the ribbons not along the edges, but in the centre, thus creating a 5.20 x 66.79 Å tunnel along the a axis. By interrupting the tetrahedral sheet, this mechanism changes the phyllosilicate-like nature of the sepiolite to an inosilicate-like structure.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Burla, M.C., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A.G.G. & Polidori, G. (1995) EXTRA: a Program for ext rac ting Struc ture-Fac tor Amplitude s from Powder Diffraction Data. Journalof Applied Crystallography, 28, 842846.CrossRefGoogle Scholar
Balci, S. (1999) Effect of heating and acid pre-treatment on pore size distribution of sepiolite. Clay Minerals, 34, 647655.CrossRefGoogle Scholar
Brindley, G.W. (1959) X-ray and electron diffraction data for sepiolite. American Mineralogist, 44, 495500.Google Scholar
Cornejo, J. & Hermosín, M.C. (1986) Efecto de la temperatura en la acidez superficial del producto obtenido por tratamiento ácido de la sepiolita. Boletín de la Sociedad Española de Mineralogía, 9, 135138.Google Scholar
Dandy, A.J. & Nadiye-Tabbiruka, M.S. (1975) The effect of heating in vacuo on the microporosity of sepiolite. Clays and Clay Minerals, 23, 428430.CrossRefGoogle Scholar
Dékány, I., Turia, L., Fonseca, A. & Nagy, J.B. (1999) The structure of acid treated sepiolites: small-angle X-ray scattering and multi MAS-NMR investigations. Applied Clay Science, 10, 141160.CrossRefGoogle Scholar
Galán, E. & Carretero, M.I. (1999) A new approach to compositional limits for sepiolite and palygorskite. Clays and Clay Minerals, 47,399 –409.CrossRefGoogle Scholar
González, L., Ibarra, L.M., Rodríguez, A., Moya, S. & Valle, F.J. (1984) Fibrous silica gel obtained from sepiolite by HCl attack. Clay Minerals, 19, 9398.CrossRefGoogle Scholar
Jiménez López, A., López González, J.D., Ramírez Sáenz, A., Rodríguez Reinoso, F., Valenzuela Calahorro, C. & Zurita Herrera, L. (1978) Evolution of surface area in a sepiolite as a function of acid and heat treatments. Clay Minerals, 13, 375385.CrossRefGoogle Scholar
Jin, S., Yang, W. & Tang, M. (2001) Study of sepiolite surface modification by acidic processing. Huagong Xiandai/Modern Chemical Industry, 21, 2628.Google Scholar
Jones, B.F. & Galán, E. (1988) Sepiolite and palygorskite. Pp. 631674 in: Hydrous Phyllosilicates (exclusive of micas)(Bailey, S.W., editor). Reviews in Mineralogy, 19, Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T. & Kamigaito, O. (1993) Mechanical properties of nylon 6-clay hybrid. Journal of Material Research, 8, 11851189.CrossRefGoogle Scholar
Krishnamoorti, R. & Giannelis, E.P. (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules, 30, 40974102.CrossRefGoogle Scholar
Lan, T., Kaviratna, P.D. & Pinnavaia, T.J. (1995) Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites. Chemistry of Materials, 7, 21442150.CrossRefGoogle Scholar
Lan, T., Kaviratna, P.D. & Pinnavaia, T.J. (1996) Epoxy self-polymerisation in smectite clays. Journal of Physics and Chemistry of Solids, 57, 10051010.CrossRefGoogle Scholar
Li, S.J. & Luo, L.T. (2001) Modification of sepiolite and its application in supported catalysts. Huagong Xiandai/Modern Chemical Industry, 21, 2125.Google Scholar
Martín Ramos, J.D. (1990) POLVO. Programa de control y aná lisis del difractómetro de rayos X. Depósito Legal M-11719.Google Scholar
Myriam, M., Suarez, M. & Martin-Pozas, J.M. (1998) Structural and textural modifications of palygorskite and sepiolite under acid treatment. Clays and Clay Minerals, 46, 225231.CrossRefGoogle Scholar
Rautureau, M. (1974) Analyse structurale de la sepiolite par microdiffraction electronique. These Universitè d’Orleans, France, 89 pp.Google Scholar
Rautureau, M. & Tchoubar, C. (1974) Precisions concernant l’analyse structurale de la sepiolite par microdiffraction electronique. Comptes Rendus de l’Académie des Sciences de Paris, 278B, 2528.Google Scholar
Rautureau, M., Tchoubar, C. & Mering, J. (1972) Analyse structurale de la sepiolite par microdiffraction electronique. Comptes Rendus de l’Académie des Sciences de Paris, 274C, 269271.Google Scholar
Rodríguez Reinoso, F., Ramírez Saenz, A., López González, J.D., Valenzuela Calahorro, C. & Zurita Herrera, L. (1981) Activation of a sepiolite with dilute solutions of HNO3 and subsequent heat treatment. Clay Minerals, 16, 315323.CrossRefGoogle Scholar
Sheldrick, G.M. (1989) SHELXTL-Plus. Program for the Solution of Crystal Structures. Release 3.4. University of Gütingen, Germany.Google Scholar
Vicente Rodríguez, M.A., López González, J.D. & Bañares Muñoz, M.A. (1994) Acid activation of a Spanish sepiolite: physicochemical characterisation, free silica content and surface area of products obtained. Clay Minerals, 29, 361367.CrossRefGoogle Scholar
Wang, M.S. & Pinnavaia, T.J. (1994) Clay-polymer nanocomposites formed from acidic derivatives of montmorillonite and an epoxy resin. Chemistry of Materials, 6, 468474.CrossRefGoogle Scholar
Wang, Z. & Pinnavaia, T.J. (1998) Nanolayer reinforcement of elastomeric polyuretane. Chemistry of Materials, 10, 37693771.CrossRefGoogle Scholar
Yucel, A.M., Rautureau, M., Tchoubar, D. & Tchoubar, C. (1981) Calculation of the X-ray powder reflection profiles of very small needle-like crystals. II. Quantitative results on Eskisehir sepiolite fibers. Journal of Applied Clay Science, 14, 431454.Google Scholar
Zvyagin, B.B. (1967) Electron Diffraction Analysis of Clay Mineral Structures. Plenum Press, New York.CrossRefGoogle Scholar