Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T01:50:32.478Z Has data issue: false hasContentIssue false

Composition, technology and provenance of Roman pottery from Napoca (Cluj-Napoca, Romania)

Published online by Cambridge University Press:  31 January 2019

Ágnes Gál
Affiliation:
Department of Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
Corina Ionescu*
Affiliation:
Department of Geology, Babeş-Bolyai University, Cluj-Napoca, Romania Archeotechnologies & Archeological Material Sciences Laboratory, Institute of International Relations, History and Oriental Studies, Kazan (Volga Region) Federal University, Tatarstan, Russia
Mátyás Bajusz
Affiliation:
National Museum of History of Transylvania, Cluj-Napoca, Romania
Vlad A. Codrea
Affiliation:
Department of Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
Volker Hoeck
Affiliation:
Department of Geology, Babeş-Bolyai University, Cluj-Napoca, Romania Division Geography and Geology, Paris Lodron University, Salzburg, Austria
Lucian Barbu-Tudoran
Affiliation:
Department of Biology, Babeş-Bolyai University, Cluj-Napoca, Romania National Institute for Research and Development of Isotopic and Molecular Technologies – INCDTIM, Cluj-Napoca, Romania
Viorica Simon
Affiliation:
Faculty of Physics, Babeş-Bolyai University, Cluj-Napoca, Romania Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeş-Bolyai University, Cluj-Napoca Romania
Marieta Mureșan-Pop
Affiliation:
Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeş-Bolyai University, Cluj-Napoca Romania
Zsolt Csók
Affiliation:
National Museum of History of Transylvania, Cluj-Napoca, Romania

Abstract

Second-century CE (common era) household pottery sherds found in the city of Napoca (present day Cluj-Napoca, Romania) in Roman Dacia were investigated by polarized light optical microscopy, X-ray powder diffraction, Fourier-transform infrared spectroscopy and cold field emission scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy to obtain information on technology, raw materials and site of production. Compositionally, all samples are similar with comparable fine and semi-fine microstructures and oriented microtextures. Optically, there is a gradual transition from microcrystalline to an amorphous illitic-muscovitic matrix. The small aplastic inclusions are mostly quartz and feldspar. Fine-grained carbonate aggregates are distributed inhomogeneously in the ceramic body. Well-preserved Middle Miocene foraminifera tests are characteristic of the ceramics. The gradual thermal changes of the matrix and the newly formed phases upon firing, such as ‘ceramic melilite’, Fe-gehlenite, clinopyroxene, glass, hematite and some maghemite support inferences regarding the technological constraints in producing the pottery. The firing took place in a mostly oxidizing atmosphere and the temperature extended from at least 850°C to >900°C. The Middle Miocene marly clay from the area surrounding the site shows similar mineralogical and micropalaeontological contents to those of the ceramic specimens and is the best candidate for the raw material used for local production of the Roman pottery.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Editor: George Christidis

References

REFERENCES

Ardevan, R. (2001) Roman kilns at Napoca. Acta Musei Porolissensis, IV, 319329 (in Romanian).Google Scholar
Barilaro, D., Barone, G., Crupi, V., Majolino, D., Mazzoleni, P., Triscari, M. & Venuti, V. (2006) Characterization of ancient amphorae by spectroscopic techniques. Vibrational Spectroscopy, 42, 381386.Google Scholar
Barone, G., Crupi, V., Longo, F., Majolino, D., Mazzoleni, P. & Venuti, V. (2011) Characterisation of archaeological pottery: the case of ‘Ionian cups’. Journal of Molecular Structure, 993, 142146.Google Scholar
Benea, M. & Gorea, M. (2007) Tegular materials from Sarmizegetusa. 1. Mineralogical and physical characteristics. Romanian Journal of Materials, 37(3), 219228.Google Scholar
Benea, M., Ienciu, R. & Rusu-Bolindeţ, V. (2013) Mineralogical and physical characteristics of Roman ceramics from Histria, Basilica extra muros sector, west–east section (Romania). Studia Universitatis Babeş-Bolyai Chemia, 58(4), 147159.Google Scholar
Berna, F., Behar, A., Shahack-Gross, R., Berg, J., Boaretto, E., Gilboa, A., Sharon, I., Shalev, S., Shilstein, S., Yahalom-Mack, N., Zorn, J.R. & Weiner, S. (2007) Sediments exposed to high temperatures: reconstructing pyrotechnological processes in late Bronze and Iron Age strata at Tel Dor (Israel). Journal of Archaeological Science, 34, 358373.Google Scholar
Brodusch, N., Demers, H. & Gauvin, R. (2018) Field Emission Scanning Electron Microscopy. New Perspectives for Material Characterization. Springer Verlag, Berlin, Germany.Google Scholar
Caroll, D. (1970) Clay minerals: a guide to their X-ray identification. The Geological Society of America Special Paper, 126, 180.Google Scholar
Cociş, S., Voişan, V., Paki, A. & Rotea, M. (1995) Preliminary report on archaeological research on V. Deleu Street, in Cluj-Napoca. I. 1992–1994. Acta Musei Napocensis, 32(I), 635652 (in Romanian).Google Scholar
Cultrone, G., Rodriguez-Navarro, C., Sebastian, E., Cazalla, O. & De la Torre, M.J. (2001) Carbonate and silicate phase reactions during ceramic firing. European Journal of Mineralogy, 13, 621634.Google Scholar
Davarcioğlu, B. & Çiftçi, E. (2009) Investigation of Central Anatolian clays by FTIR spectroscopy (Arapli-Yesilhisar-Kayseri, Turkey). International Journal of Natural and Engineering Sciences, 3(3), 167174.Google Scholar
De Benedetto, G.E., Laviano, R., Sabbatini, L. & Zambonin, P.G. (2002) Infrared spectroscopy in the mineralogical characterization of ancient pottery. Journal of Cultural Heritage, 3(3), 177186.Google Scholar
De Bonis, A., Cultrone, G., Grifa, C., Langella, A. & Morra, V. (2014) Clays from the Bay of Naples (Italy): new insight on ancient and traditional ceramics. Journal of the European Ceramic Society, 34(13), 32293244.Google Scholar
Deer, W.A., Howie, R.A. & Zussman, J. (1992) An Introduction to the Rock-Forming Minerals. Pearson Prentice Hall, London, UK.Google Scholar
Dondi, M., Ercolani, G., Fabbri, B. & Marsigli, M. (1999) Chemical composition of melilite formed during the firing of carbonate-rich and iron-containing ceramic bodies. Journal of American Ceramic Society, 82(2), 465468.Google Scholar
Emami, M., Sakalib, Y., Pritzel, C. & Trettin, R. (2016) Deep inside the ceramic texture: a microscopic–chemical approach to the phase transition via partial-sintering processes in ancient ceramic matrices. Journal of Microscopy and Ultrastructure, 4(1), 1119.Google Scholar
Fabbri, B., Gualtieri, S. & Shoval, S. (2014) The presence of calcite in archeological ceramics. Journal of European Ceramic Society, 34, 18991911.Google Scholar
Foit, F.F. Jr, Hooper, R.L. & Rosenberg, P.E. (1987) An unusual pyroxene, melilite, and iron oxide mineral assemblage in a coal-fire buchite from Buffalo, Wyoming. American Mineralogist, 72, 137147.Google Scholar
Freund, F. (1974) Ceramics and thermal transformations of minerals. Pp. 465482 in: The Infrared Spectra of Minerals (Farmer, V.C., editor). Mineralogical Society, London, UK.Google Scholar
Grapes, R. (2011) Pyrometamorphism. Springer, Berlin-Heidelberg, Germany.Google Scholar
Harzhauser, M. & Piller, E.W. (2007) Benchmark data of a changing sea – palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Paleogeography, Palaeoclimatology, Palaeoecology, 253, 831.Google Scholar
Havas, L., Németh, G. & Szabó, E. (2001) Roman History. Korona Kiadó, Budapest, Hungary (in Hungarian).Google Scholar
Heimann, R.B. (2017) X-ray powder diffraction (XRPD). Pp. 327341 in: The Oxford Handbook of Archaeological Ceramic Analysis (Hunt, A.M.W., editor). Oxford University Press, Oxford, UK.Google Scholar
Hunt, A.M.W. (2012) On the origin of ceramics: moving toward a common understanding of ‘provenance’. Archaeological Review from Cambridge, 27(1), 8597.Google Scholar
Ionescu, C. & Ghergari, L. (2007) Mineralogical and petrographic features of Roman ceramics from Napoca. Pp. 434462 in: Roman ceramics from Napoca. Contributions to the study of ceramics from Roman Dacia (Rusu-Bolindeţ, V., editor). Bibliotheca Musei Napocensis, Cluj-Napoca, Romania (in Romanian, with English abstract).Google Scholar
Ionescu, C., Ghergari, L. & Ţentea, O. (2006) Interdisciplinary (mineralogical–geological–archaeological) study on the tegular material belonging to the Legion XIII Gemina from Alburnus Maior (Roşia Montană) and Apulum (Alba Iulia): possible raw materials sources. Cercetări Arheologice, 13, 387410.Google Scholar
Ionescu, C., Hoeck, V., Crandell, O.N. & Šarić, K. (2015) Burnishing versus smoothing in ceramic surface finishing: a SEM study. Archaeometry, 57(1), 1826.Google Scholar
Ionescu, C., Hoeck, V. & Ghergari, L. (2011) Electron microprobe analysis of ancient ceramics: a case study from Romania. Applied Clay Science, 53(3), 466475.Google Scholar
Ionescu, C., Topa, D. & Hoeck, V. (2017) Field emission gun electron microprobe and ion-etching technique applied for ancient ceramic study. P. W10 in: 14th Edition European Meeting on Ancient Ceramics, 6–9 Sept. 2017, Bordeaux, Université Bordeaux Montaigne and Centre National de la Recherche Scientifique (CNRS) France.Google Scholar
Inada, H., Kakibayashi, H., Isakozawa, S., Hashimoto, T., Yaguchi, T. & Nakamura, K. (2009) Hitachi's development of cold-field emission scanning transmission electron microscopes. Advances in Imaging and Electron Physics, 159, 123186.Google Scholar
Kacim, S. & Hajjaji, M. (2003) Firing transformation of a carbonatic clay from the High-Atlas, Morocco. Clay Minerals, 38(3), 361365.Google Scholar
Kaufhold, S., Hein, M., Dohrmann, R. & Ufer, K. (2012) Quantification of the mineralogical composition of clays using FTIR spectroscopy. Vibrational Spectroscopy, 59, 2939.Google Scholar
Kreimeyer, R. (1987) Some notes on the firing colour of clay bricks. Applied Clay Science, 2(2), 175183.Google Scholar
Lukács, J. (2005) The Story of the Treasure-City. Short History of Cluj and Its Monuments. Apostrof, Cluj-Napoca, Romania (in Romanian).Google Scholar
Madejová, J. (2003) FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31, 110.Google Scholar
Madejová, J. & Komadel, P. (2001) Baseline studies of the Clay Minerals Society source clays: infrared methods. Clays and Clay Minerals, 49, 410432.Google Scholar
Maggetti, M. (1979) Mineralogisch-petrographische Untersuchung des Scherbenmaterials der urnenfelderzeitlichen Siedlung Elchinger Kreuz, Ldkr. Neu-Ulm/Donau. Kataloge der Prähistorischen Staatssammlung München, 19, 141172.Google Scholar
Maggetti, M. (1982) Phase analysis and its significance for technology and origin. Pp. 121133 in: Archaeological Ceramics (Olin, J.S. & Franklin, A.D., editors). Smithsonian Institute Scholarly Press, Washington, DC, USA.Google Scholar
Maggetti, M. (2001) Chemical analyses of ancient ceramics: what for? Chimia, 55, 923930.Google Scholar
Mészáros, N. & Clichici, O. (1988) La géologie du Municipe Cluj-Napoca. Studia Universitatis Babeș-Bolyai, Geologia-Geographia, 33(1), 5156.Google Scholar
Mészáros, N., Petrescu, I. & Mârza, I. (1991) Contributions to the study of the Miocene formations bearing volcanic tuff from the colina ‘Iris’ quarry (Cluj-Napoca). Pp. 5561 in: The Volcanic Tuffs from the Transylvanian Basin (Mârza, I., editor), Babeș-Bolyai University, Cluj-Napoca, Romania.Google Scholar
Molera, J., Pradell, T. & Vendrell-Saz, M. (1998) The colours of Ca-rich ceramic pastes: origin and characterization. Applied Clay Science, 13, 187202.Google Scholar
Moore, D.M. & Reynolds, R.C. Jr (1997) X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, UK.Google Scholar
Munsell, A. (1994) Munsell Soil Colour Charts. Munsell Colour, New Windsor, NY, USA.Google Scholar
Nicorici, E., Petrescu, I. & Mészáros, N. (1979) Contributions to the knowledge of Lower and Mid- Miocene from ‘Coasta cea Mare’ (Cluj-Napoca). Studii și Cercetări de Geologie, Geofizică și Geografie, Seria Geologie, 24, 103137.Google Scholar
Nodari, L., Marcuz, E., Maritan, L., Mazzoli, C. & Russo, U. (2007) Hematite nucleation and growth in the firing of carbonate-rich clay for pottery production. Journal of the European Ceramic Society, 27, 46654673.Google Scholar
Nodari, L., Maritan, L., Mazzoli, C. & Russo, U. (2004) Sandwich structures in the Etruscan-Padan type pottery. Applied Clay Science, 27, 119128.Google Scholar
Pascu, Ș. (1974) History of Cluj. Cluj Mayor House, Cluj-Napoca, Romania (in Romanian).Google Scholar
Popescu, G. (1970) Planktonic foraminiferal zones in the Dej Tuff Complex. Revue Roumaine de Geologie Geophisique Geographie, Ser. Geologie, 14(2), 189213.Google Scholar
Price, K.L. & McDowell, S.D. (1993) Illite/smectite geothermometry of the Proterozoic Oronto group, mid-continent rift system. Clays and Clay Minerals, 41, 134147.Google Scholar
Quinn, P.S. (2008) The occurrence and research potential of microfossils in inorganic archaeological materials. Geoarchaeology, 23, 275291.Google Scholar
Quinn, P.S. & Day, P.M. (2007) Calcareous microfossils in Bronze Age Aegean ceramics: illuminating technology and provenance. Archaeometry, 49(4), 775793.Google Scholar
Rathossi, C. & Pontikes, Y. (2010) Effect of firing temperature and atmosphere on ceramics made of NW Peloponnese clay sediments: part II. Chemistry of pyrometamorphic minerals and comparison with ancient ceramics. Journal of the European Ceramic Society, 30, 18531866.Google Scholar
Răileanu, G., Saulea, E., Dumitrescu, I., Bombiţă, G., Marinescu, F., Borcoş, M. & Stancu, J. (1967) Geological Map of Romania, 1:200,000 sc., Cluj Sheet. Geological Institute, Bucharest, Romania.Google Scholar
Riccardi, M.P., Messiga, B. & Duminuco, P. (1999) An approach to the dynamics of clay firing. Applied Clay Science, 15, 393409.Google Scholar
Rusu-Bolindeț, V. (2007) Roman Ceramics from Napoca. Contribution to the Study of Ceramics from Roman Dacia. Editura Mega, Cluj-Napoca, Romania (in Romanian).Google Scholar
Shepard, A.O. (1985) Ceramics for the Archaeologists. Carnegie Institution for Science, Washington, DC, USA.Google Scholar
Shoval, S. (2003) Using FT-IR spectroscopy for study of calcareous ancient ceramics. Optical Materials, 24(1–2), 117122.Google Scholar
Shoval, S. (2017) Fourier transform infrared spectroscopy (FT-IR) in archaeological ceramic analysis. Pp. 509530 in: The Oxford Handbook of Archaeological Ceramic Analysis (Hunt, A.M.W., editor). Oxford University Press, Oxford, UK.Google Scholar
Shoval, S. & Beck, P. (2005) Thermo-FTIR spectroscopy analysis as a method of characterizing ancient ceramic technology. Journal of Thermal Analysis and Calorimetry, 82(3), 609616.Google Scholar
Shoval, S., Beck, P. & Yadin, E. (2006) The ceramic technology used in the manufacture of Iron Age pottery from Galilee. Pp. 101117 in: Geomaterials in Cultural Heritage (Maggetti, M. & Messiga, B., editors). London Geological Society, London, UK.Google Scholar
Shoval, S., Ginott, Y. & Nathan, Y. (1991) A new method for measuring the crystallinity index of quartz by infrared spectroscopy. Mineralogical Magazine, 55, 579582.Google Scholar
Shoval, S., Yadin, E. & Panczer, G. (2011) Analysis of thermal phases in calcareous Iron Age pottery using FT-IR and Raman spectroscopy. Journal of Thermal Analysis and Calorimetry, 104, 515525.Google Scholar
Srasra, E., Bergaya, F. & Fripiat, J.J. (1994) Infrared spectroscopy study of tetrahedral and octahedral substitutions in an interstratified illite-smectite clay. Clays and Clay Minerals, 42(3), 237241.Google Scholar
Velde, B. & Druc, C.I. (1999) Archaeological Ceramic Materials. Origin and Utilization. Springer, Berlin-Heidelberg, Germany.Google Scholar
Whitney, D.L. & Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.Google Scholar
Yoffe, O., Nathan, Y., Wolfarth, W., Cohen, S. & Shoval, S. (2002) The chemistry and mineralogy of the Negev oil shale ashes. Fuel, 81, 1101–1011.Google Scholar