Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T03:51:59.663Z Has data issue: false hasContentIssue false

Clay mineral studies of the Tripoli Formation (Lower Messinian), Sicily

Published online by Cambridge University Press:  09 July 2018

E. Azzaro
Affiliation:
Istituto di Mineralogia, Petrografia, Geochimica, Via Archirafi 36, 90123 Palermo, Italy
A. Bellanca
Affiliation:
Istituto di Mineralogia, Petrografia, Geochimica, Via Archirafi 36, 90123 Palermo, Italy
R. Neri
Affiliation:
Istituto di Mineralogia, Petrografia, Geochimica, Via Archirafi 36, 90123 Palermo, Italy

Abstract

The characterization of clay mineral assemblages in the diatomite-dominated Tripoli Formation (Lower Messinian, central Sicily) has resulted in delineation of suites dominated by generally well-crystallized dioctahedral smectite and illite of low crystallinity, with lesser amounts of kaolinite and chlorite. These minerals are thought to have a mainly detrital origin related to the calcareous and marly formations exposed in the margins of the depositional area. Vertical fluctuations of the montmorillonite/illite ratio and changes of the crystallinity and chemical composition of these phyllosilicates support environmental interpretations from isotopic data of associated carbonates, and point to a wide variability of depositional conditions ranging from evaporating to brackish. Early diagenesis of the clay minerals was controlled by the primary composition of the sediment which, in turn, affected the porewater chemistry.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barahona, E., Huertas, F., Pozzuoli, A. & Linares, J. (1982) Mineralogia e genesi dei sedimenti della provincia di Granada (Spagna). Miner. Petrogr. Acta, 26, 61–90.Google Scholar
Barbieri, M., Bellanca, A. & Neri, R. (1981) Origin of zeolites associated with montmorillonite and silica phases in Miocene deposits of Sicily. Miner. Petrogr. Acta, 25, 41–55.Google Scholar
Bellanca, A., Di Caccamo, A. & Neri, R. (1980) Mineralogia e geochimica di alcuni suoli della Sicilia centro- occidentale: studio delle variazioni composizionali in relazione ai litotipi d'origine. Miner. Petrogr. Acta, 24, 1–15.Google Scholar
Bellanca, A., Calderone, S. & Neri, R. (1982-83) Evidenze geochimiche e mineralogiche di episodi evaporitici nella sequenza diatomitica (Messiniano "pre-evaporitico") di Sutera (Sicilia centrale). Soc. ltd. Miner. Petrol., 38, 1271–1280.Google Scholar
Bellanca, A., Calderone, S. & Neri, R. (1983) Studio isotopico, mineralogico e tessiturale sul Tripoli di Cozzo Campana (Sicilia centrale): implicazioni ambientali. Miner. Petrogr. Acta, 27, 91–103.Google Scholar
Bellanca, A. Calderone, S. & Neri, R. (1986) Isotope geochemistry, petrology and depositional environments of the diatomite-dominated Tripoli Formation (Lower Messinian), Sicily. Sedimentology, 33, 729–743.Google Scholar
Bellanca, A. & Neri, R. (1986) Evaporite carbonate cycles of the Messinian, Sicily: stable isotopes, mineralogy, textural features, and environmental implications. J. Sed. Pet., 56, 614–621.Google Scholar
Biscaye, P.E. (1965) Mineralogy and sedimentation of recent deep sea clays in the Atlantic Ocean and adjacent seas and oceans. Geoi Soc. Amer. Bull., 76, 803–832.Google Scholar
Catalano, R. (1979) Scogliere ed evaporiti messiniane in Sicilia. Modelli genetici ed implicazioni strutturali. Lavori 1st. Geologia Univ. Palermo, 18, 1–21.Google Scholar
Cole, T.G. & Shaw, H.F. (1983) The nature and origin of authigenic smectites in some recent marine sediments. Clay Miner., 18, 239–252.Google Scholar
Decima, A. & Wezel, F.C. (1971) Osservazioni sulle evaporiti messiniane della Sicilia centro-meridionale. Riv. Miner. Siciliana, 130-132, 172187.Google Scholar
Dunoyer De Segonzac, G. (1970) The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentology, 15, 281–346.Google Scholar
Elverhoi, A. & Romingsland, T.M. (1978) Semiquantitative calculations of the relative amounts of kaolinite and chlorite by X-ray diffraction. Marine Geology, 27, 19–23.CrossRefGoogle Scholar
Griffin, J.J., Windom, H. & Goldberg, E.D. (1968) The distribution of clay minerals in the World Oceans. Deep Sea Res., 15, 433–459.Google Scholar
Kubler, B. (1968) Evaluation quantitative du methamorphisme par la cristallinite de Tillite. Bull. Cent. Rech. Pau., S.N.P.A., 22, 258–307.Google Scholar
Longinelli, A. (1979/1980) Isotope geochemistry of some Messinian evaporites: paleoenvironmental implications. Paleogeogr. Paleoclim. Paleoecol., 29, 95–123.Google Scholar
MacEwan, D.M.C. & Wilson, M.J. (1980) Interlayer and intercalation complexes of clay minerals. Pp. 197248 in: Crystal Structures of Clay Minerals and their X-ray Identification(Brindley, G. W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
McKenzie, J. A. (1985) Stable-isotope mapping in Messinian evaporative carbonates of central Sicily. Geology, 13, 851–854.Google Scholar
McKenzie, J.A., Jenkyns, H.C. & Bennett, G.G. (1979/1980) Stable isotope study of the cyclic diatomite- claystones from the Tripoli Formation, Sicily: a prelude to the Messinian salinity crisis. Paleogeogr. Paleoclim. Paleoecol., 29, 125–149.Google Scholar
Nadeau, P.H., Tait, J.M., McHardy, W.J. & Wilson, M.J. (1984) Interstratified XRD characteristics of physical mixtures of elementary clay particles. Clay Miner., 19, 67–76.Google Scholar
Orr, W. (1978) Biogeochemistry. Pp. 16L1-16L19 in: Handbook of GeochemistryII-2, (K. H. Wedepohl, editor). Springer-Verlag, Berlin.Google Scholar
Paquet, H. (1969) Quoted in Chamley, H., Dunoyer de Segonzac, G. & Melieres, F. (1978) Clay minerals in Messinian sediments of the Mediterranean area. DSDP Initial Reports, 42, 389–395.Google Scholar
Pierre, C. & Fontes, J.C. (1978) Isotope composition of Messinian sediments from the Mediterranean Sea as indicators of paleoenvironments and diagenesis. 42, 635650.Google Scholar
Ramseyer, K. & Boles, J.R. (1986) Mixed layer illite/smectite minerals in Tertiary sandstones and shales, San Joaquin Basin, California. Clays Clay Miner., 34, 115–124.Google Scholar
Rengasamy, P. (1976) Substitution of iron and titanium in kaolinites. Clays Clay Miner., 24, 265–266.Google Scholar
Reynolds, R.C. (1980) Interstratified clay minerals. Pp. 249-303 in: Crystal Structures of Clay Minerals and their X-ray Identification (Brindley, G. W. & Brown, G., editors). Mineralogical Society, London.Google Scholar
Rouchy, J.M. & Pierre, C. (1987) Authigenic natroalunite in middle Miocene evaporites from the Gulf of Suez (Gemsa, Egypt). Sedimentology, 34, 807–812.Google Scholar
Schultz, L.G. (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. U.S. Geol. Surv. Prof. Pap., 391C.Google Scholar
Srodon, J. (1981) X-ray identification of randomly interstratified illite-smectite in mixtures with discrete illite. Clay Miner., 16, 297–304.Google Scholar
Weaver, C.E. (1976) The nature of Ti02 in kaolinite. Clays Clay Miner., 24, 215–218.Google Scholar
Weaver, R.M., Jackson, M.L. & Syers, J.K. (1976) Clay mineral stability as related to activities of aluminum, silicon, and magnesium in matrix solution of montmorillonite-containing soils. Clays Clay Miner., 24, 246252.Google Scholar
Wilson, M.J. (1987) X-ray powder diffraction methods. Pp. 26-97 in: A Handbook of Determinative Methods in Clay Mineralogy(Wilson, M. J., editor). Blackie, Glasgow & London.Google Scholar