Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T12:00:00.824Z Has data issue: false hasContentIssue false

Chemical controls on incipient Mg-silicate crystallization at 25°C: Implications for early and late diagenesis

Published online by Cambridge University Press:  27 February 2018

N. J . Tosca*
Affiliation:
Department of Earth and Environmental Sciences, University of St Andrews, St Andrews, KY16 9AL, UK
A. L. Masterson
Affiliation:
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mg-silicate minerals (e.g., stevensite, kerolite, talc, sepiolite) play an important role in the construction of facies models in lacustrine and peri-marine environments because they are sensitive to changes in solution chemistry. However, the response of Mg-silicate mineralogy to changing aqueous chemistry is only broadly understood because the mechanisms underpinning the coprecipitation of Mg2+ and SiO2(aq) from surface water, and subsequent Mg-silicate crystallization, are unclear. Here we describe the results of experiments designed to systematically examine the effects of pH, Mg/Si and salinity of the parent solution on the nature of initially precipitated products. Structural interrogation of the products with X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and thermal analysis (TGA/DTA) allow comparison of synthetic products with naturally occurring crystalline counterparts. In general, Mg2+ and SiO2(aq) co-precipitation and nucleation of Mg-silicate layer structures first involves the rapid formation of 2:1 layers with trioctahedral occupancy and a mean coherent X-ray scattering domain between 1–2 unit cells with respect to the c axis. Well defined but diffuse hk reflections indicate two-dimensional growth, turbostratic stacking and highly variable interlayer hydration. Diffuse reflectance FTIR shows numerous structural similarities with stevensite, kerolite and sepiolite. However, TGA/DTA analysis indicates the presence of variable kerolite/stevensite interstratification not readily detectable through XRD analyses, as well as a significant degree of surface and interlayer hydration (e.g. 15–20 wt.%).

We observe a number of clear trends in the products with respect to solution chemistry. For example, at low salinity, kerolite-like products dominate at high Mg/Si and high pH, whereas sepiolite-like products are formed at lower pH and lower Mg/Si. At high salinity and high Mg/Si, stevensite-like products are favoured at high pH and kerolite-like products dominate at lower pH, whereas a decrease in Mg/Si of the solution leads to sepiolite-like products at low pH and only stevensite-like products at high pH. Higher pH leads to an increase in octahedral vacancies which favour stevensite-like products; this may result from a higher rate of two-dimensional tetrahedral sheet expansion relative to the octahedral sheet, as inferred from studies of silica oligomerization and brucite growth kinetics.

Together, our results indicate that the neoformation of Mg-rich silicates from solution may often begin with the rapid nucleation of hydrated 2:1 layers. Subsequent dehydration leads to progressive layer stacking order and could occur in response to wetting/drying cycles, prolonged exposure to high salinity solutions, or burial and heating. The surface and interlayer water associated with these products is undoubtedly an important source of diagenetic water in Mg-silicate-bearing successions, and the chemistry of this water upon later diagenesis should be a focus of future investigation.

Type
Research Article
Creative Commons
Creative Common License - CCCreative Common License - BY
Copyright © The Mineralogical Society of Great Britain and Ireland 2014 This is an Open Access article, distributed under the terms of the Creative Commons Attribution license. (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

References

Abtahi, A. (1985) Synthesis of sepiolite at roomtemperature from S.O. and MgCl2 solution. Clay Minerals, 20, 521–523.10.1180/claymin.1985.020.4.08CrossRefGoogle Scholar
Benhammou, A., Tanouti, B., Nibou, L., Yacoubi, A. & Bonnet J.-P. (2009) Mineralogical and physicochemical investigation of Mg-smectite from Jbel Ghassoul, Morocco. Clays and Clay Minerals, 57, 264–270.10.1346/CCMN.2009.0570212Google Scholar
Bertani, R.T. & Carozzi, A.V. (1985) Lagoa Feia Formation (Lower Cretaceous), Campos Basin, offshore Brazil: Rift valley stage lacustrine carbonate reservoirs - I. Journal of Petroleum Geology, 8, 37–58.10.1111/j.1747-5457.1985.tb00190.xGoogle Scholar
Bethke, C.M. (2002) The Geochemist’s Workbench, Release 4.0: A user’s guide to Rxn, Act2, Tact, React, and Gtplot. University of Illinois.Google Scholar
Bickmore, B.R., Bosbach, D., Hochella, M.F. Jr., Charlet, L. & Rufe, E. (2001) In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms. American Mineralogist, 86, 411–423.10.2138/am-2001-0404CrossRefGoogle Scholar
Birsoy, R. (2002) Formation of sepiolite-palygorskite and related minerals from solution. Clays and Clay Minerals, 50, 736–745.10.1346/000986002762090263Google Scholar
Bish, D.L. & Duffy, C.J. (1990) Thermogravimetric analysis of minerals. Pp. 96–157 in: Thermal Analysis in Clay Science (J. Stucki & D. Bish, editors), CMS Workshop Lectures, 3, Clay Minerals Society.Google Scholar
Bodine, M.W. (1983) Trioctahedral clay mineral assemblages in Paleozoic marine evaporite rocks. Pp. 267–284 in: Sixth international symposium on salt, 1. Alexandria, Virginia, Salt Institute.Google Scholar
Brindley, G.W., Bish, D.L. & Wan, H.M. (1977) Nature of kerolite and its relation to talc and stevensite. Mineralogical Magazine, 41, 443–452.10.1180/minmag.1977.041.320.04Google Scholar
Bristow, T.F., Kennedy, M.J., Morrison, K.D. & Mrofka, D.D. (2012) The influence of authigenic clay formation on the mineralogy and stable isotopic record of lacustrine carbonates. Geochimica et Cosmochimica Acta, 90, 64–82.10.1016/j.gca.2012.05.006CrossRefGoogle Scholar
Buey, C.d-S., Barrios, M.S., Romero, E.G. & Montoya, M.D. (2000) Mg-rich smectite "precursor" phase in the Tagus Basin, Spain. Clays and Clay Minerals, 48, 366–373.10.1346/CCMN.2000.0480307CrossRefGoogle Scholar
Callen, R.A. (1984) Clays of the palygorskite-sepiolite group: depositional environment, age and distribution. Pp. 1–37 in: Palygorskite-Sepiolite. Occurrences, Genesis and Uses (A. Singer & E. Galan, editors). Developments in Sedimentology, 37.Google Scholar
Calvo, J.P., Blanc-Valleron, M.M., Rodríguez-Aranda, J.P., Rouchy, J.M. & Sanz, M.E. (1999) Authigenic clay minerals in continental evaporitic environments. Pp. 129–151 in: Palaeoweathering, Palaeosurfaces and Related Continental Deposits, IAS Special Publication.Google Scholar
Chahi, A., Duringer, P., Ais, M., Bouabdelli, M., Gauthier- Lafaye, F. & Fritz, B. (1999) Diagenetic transformation of dolomite into stevensite in lacustrine sediments from Jbel Rhassoul, Morocco. Journal of Sedimentary Research, 69, 1123–1135.10.2110/jsr.69.1123CrossRefGoogle Scholar
Clauer, N., Fallick, A.E., Galán, E., Pozo, M. & Taylor, C. (2012) Varied crystallization conditions for neogene sepiolite and associated mg-clays from madrid basin (spain) traced by oxygen and hydrogen isotope geochemistry. Geochimica et Cosmochimica Acta, 94, 181–198. doi:10.1016/j.gca.2012.07.01CrossRefGoogle Scholar
Couture, R.A. (1977) Composition and origin of palygorskite-rich and montmorillonite-rich zeolitecontaining sediments from the Pacific Ocean. Chemical Geology, 19, 113–130.10.1016/0009-2541(77)90009-2CrossRefGoogle Scholar
Darragi, F. & Tardy, Y. (1987) Authigenic trioctahedral smectites controlling pH, alkalinity, silica and magnesium concentrations in alkaline lakes. Chemical Geology, 63, 59–72.10.1016/0009-2541(87)90074-XGoogle Scholar
Decarreau, A. (1980) Cristallogene`se expérimentale des smectites magnésiennes: hectorite, stevensite. Bulletin de Minéralogie, 103, 579–590.Google Scholar
Decarreau, A. (1985) Partitioning of divalent transition elements between octahedral sheets of trioctahedral smectites and water. Geochimica et Cosmochimica Acta, 49, 1537–1544.10.1016/0016-7037(85)90258-3Google Scholar
Decarreau, A., Vigier, N., Pálková H., Petit, S., Vieillard, P. & Fontaine, C. (2012) Partitioning of lithium between smectite and solution: An experimental approach. Geochimica et Cosmochimica Acta, 85, 314–325.10.1016/j.gca.2012.02.018Google Scholar
Deocampo, D.M. (2004) Authigenic clays in East Africa: Regional trends and paleolimnology at the Plio– Pleistocene boundary, Olduvai Gorge, Tanzania. Journal of Paleolimnology, 31, 1–9.10.1023/B:JOPL.0000013353.86120.9bGoogle Scholar
Deocampo, D.M., Cuadros, J., Wing-Dudek, T., Olivez, J. & Amouric, M. (2009) Saline lake diagenesis as revealed by coupled mineralogy and geochemistry of multiple ultrafine clay phases: Pliocene Olduvai Gorge, Tanzania. American Journal of Science, 309, 834–858.10.2475/09.2009.03Google Scholar
Dietzel, M. (2000) Dissolution of silicates and the stability of polysilicic acid. Geochimica et Cosmochimica Acta, 64, 3275–3281.10.1016/S0016-7037(00)00426-9Google Scholar
Eugster, H.P. & Jones, B.F. (1979) Behavior of major solutes during closed-basin brine evolution. American Journal of Science, 279, 609–631.10.2475/ajs.279.6.609Google Scholar
Farmer, V.C. (1974a) The Infrared Spectra of Minerals. Monograph 4, London, the Mineralogical Society.10.1180/mono-4CrossRefGoogle Scholar
Farmer, V.C. (1974b) The layer silicates. Pp. 331–364 in The Infrared Spectra of Minerals (V.C. Farmer, editor). Monograph 4, London, the Mineralogical Society.Google Scholar
Faust, G.T., Hathaway, J.C. & Millot, G. (1959) A restudy of stevensite and allied minerals. American Mineralogist, 44, 342–370.Google Scholar
Felmy, A.R., Cho, H., Rustad, J.R. & Mason, M.J. (2001) An aqueous thermodynamic model for polymerized silica species to high ionic strength. Journal of Solution Chemistry, 30, 509–525.10.1023/A:1010382701742Google Scholar
Fischer, B.E., Haring, U.K., Tribolet, R. & Sigel, H. (1979) Metal ion/buffer interactions. European Journal of Biochemistry, 94, 523–530.CrossRefGoogle ScholarPubMed
Frost, R.L., Locos, O.B., Ruan, H. & Kloprogge, J.T. (2001) Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites. Vibrational Spectroscopy, 27, 1–13.10.1016/S0924-2031(01)00110-2Google Scholar
Gac, J.Y., Droubi, A., Fritz, B. & Tardy, Y. (1977) Geochemical behaviour of silica and magnesium during the evaporation of waters in Chad. Chemical Geology, 19, 215–228.10.1016/0009-2541(77)90016-XGoogle Scholar
Galán, E. & Pozo, M. (2011) Palygorskite and sepiolite deposits in continental environments. Description, genetic patterns and sedimentary settings. Pp. 125–173 in: Developments in Palygorskite- Sepiolite Research (E. Galan & A. Singer, editors). Developments in Clay Science, 3, 125–173.Google Scholar
Guggenheim, S. & Krekeler, M.P. (2011) The structures and microtextures of the palygorskite-sepiolite group minerals. Pp. 3–32 in: Developments in Palygorskite-Sepiolite Research (E. Galan & A. Singer, editors). Developments in Clay Science, 3, Elsevier.Google Scholar
Guggenheim, S., Bain, D.C., Bergaya, F., Brigatti, M.F., Drits, V.A., Eberl, D.D., Formoso M.L.L., Galán, E., Merriman, R.J., Peacor, D.R., Stanjek, H. & Watanabe, T. (2002) Report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2001: Order, disorder and crystallinity in phyllosilicates and the use of the “crystallinity index”. Clays and Clay Minerals, 50, 406–409.10.1346/000986002760833783CrossRefGoogle Scholar
Guggenheim, S., Adams, J.M., Bain, D.C., Bergaya, M., Brigatti, M.F., Drits, V.A., Formoso M.L.L., Galán, E., Kogure, T. & Stanjek, H. (2006) Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays and Clay Minerals, 54, 761–772.10.1346/CCMN.2006.0540610Google Scholar
Guven, N. & Carney, L. L. (1979) The hydrothermal transformation of sepiolite to stevensite and the effect of added chlorides and hydroxides. Clays and Clay Minerals, 27, 253–260.10.1346/CCMN.1979.0270403Google Scholar
Hardie, L.A. & Eugster, H.P. (1970) The evolution of closed-basin brines. Mineralogical Society of America Special Publication, 3, 273–290.Google Scholar
Hartman, P. & Perdok, W.G. (1955a) On the relations between structure and morphology of crystals. I. Acta Crystallographica, 8, 49–52.Google Scholar
Hartman, P. & Perdok, W.G. (1955b) On the relations between structure and morphology of crystals. II. Acta Crystallographica, 8, 521–4.Google Scholar
Hartman, P. & Perdok, W.G. (1955c) On the relations between structure and morphology of crystals. III. Acta Crystallographica, 8, 525–9.Google Scholar
Harvie, C.E., Moller, N. & Weare, J.H. (1984) The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2- H2O system to high ionic strengths at 25°C. Geochimica et Cosmochimica Acta, 48, 723–751.10.1016/0016-7037(84)90098-XGoogle Scholar
Hershey, J.P. & Millero, F.J. (1986) The dependence of the acidity constants of silicic acid on N.C. concentration using Pitzer’s equations. Marine Chemistry, 18, 101–105.10.1016/0304-4203(86)90079-4Google Scholar
Hostetler, P.B. & Christ, C.L. (1968) Studies in the system MgO-SiO2-CO2-H2O (I): The activity-product constant of chrysotile. Geochimica et Cosmochimica Acta, 32, 485–497.10.1016/0016-7037(68)90041-0CrossRefGoogle Scholar
Icopini, G.A., Brantley, S.L. & Heaney, P.J. (2005) Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength at 25°C. Geochimica et Cosmochimica Acta, 69, 293–303.10.1016/j.gca.2004.06.038CrossRefGoogle Scholar
Iler, R.K. (1979) The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Wiley.Google Scholar
Jeans, C.V. (1971) The neoformation of clay minerals in brackish and marine environments. Clay Minerals, 9, 209–217.10.1180/claymin.1971.009.2.06Google Scholar
Jones, B.F. (1986) Clay mineral diagenesis in lacustrine sediments. Pp. 291–300 in: Studies in Diagenesis (F.A. Mumpton, editor). U.S. Geological Survey.Google Scholar
Jones, B.F. & Conko, K.M. (2011) Environmental influences on the occurrences of sepiolite and palygorskite: a brief review. Pp. 69–83 in: Developments in Palygorskite-Sepiolite Research (E. Galan & A. Singer, editors). Developments in Clay Science, 3.Google Scholar
Jones, B.F. & Galan, E. (1988) Sepiolite and palygorskite. Reviews in Mineralogy, 19, 631–674.Google Scholar
Jones, B.F. & Weir, A.H. (1983) Clay minerals of Lake Abert, an alkaline, saline lake. Clays and Clay Minerals, 31, 161–172.10.1346/CCMN.1983.0310301Google Scholar
Kawano, M. & Tomita, K. (1991) Dehydration and rehydration of saponite and vermiculite. Clays and Clay Minerals, 39, 174–183.Google Scholar
La Iglesia, A. (1978) Síntesis de la sepiolita a temperatura ambiente por precipitación homogénea. Boletín Geológico Minero, 89, 258–265.Google Scholar
Leveille, R.J., Fyfe, W.S. & Longstaffe, F.J. (2000) Unusual secondary Ca-Mg-carbonate-kerolite deposits in basaltic caves, Kauai, Hawaii. Journal of Geology, 108, 613–621.10.1086/314417Google Scholar
Leveille, R.J., Longstaffe, F.J. & Fyfe, W.S. (2002) Kerolite in carbonate-rich speleothems and microbial deposits from basaltic caves, Kauai, Hawaii. Clays and Clay Minerals, 50, 514–524.10.1346/000986002320514235Google Scholar
Macdonald, F.A., Halverson, G.P., Strauss, J.V., Smith, E.F., Cox, G., Sperling, E.A. & Roots, C.F. (2012) Early Neoproterozoic Basin Formation in Yukon, Canada: Implications for the make-up and break-up of Rodinia. Geoscience Canada, 39, no.2.Google Scholar
Macdonald, F.A., Smith, E.F., Strauss, J.V., Cox, G., Halverson, G.P. & Roots, C.F. (2011) Neoproterozoic and early Paleozoic correlations in the western Ogilvie Mountains, Yukon. Yukon Exploration and Geology, 161–182.Google Scholar
Mackenzie, R.C. (1970a) Differential Thermal Analysis: Fundamental aspects. Academic Press.Google Scholar
Mackenzie, R.C. (1970b) Simple phyllosilicates based on gibbsite and brucite-like sheets. Pp. 497–537 in: Differential Thermal Analysis: Fundamental Aspects (R.C. Mackenzie, editor), 1.Google Scholar
Marion, G.M. & Farren, R.E. (1999) Mineral solubilities in the Na-K-Mg-Ca-Cl-SO4-H2O system: A reevaluation of the sulfate chemistry in the Spencer- Moller-Weare model. Geochimica et Cosmochimica Acta, 63, 1305–1318.10.1016/S0016-7037(99)00102-7Google Scholar
Martin Vivaldi, J. & Fenoll Hach-Ali, P. (1970) Palygorskites and sepiolites (hormites). Pp. 553–573 in: Differential Thermal Analysis: Fundamental Aspects (R.C. Mackenzie, editor).Google Scholar
Meunier, A. (2006) Why are clay minerals small? Clay Minerals, 41, 551–566.Google Scholar
Miller, C.R. & James, N. (2012) Autogenic microbial genesis of Middle Miocene palustrine ooids; Nullarbor Plain, Australia. Journal of Sedimentary Research, 82, 633–647.10.2110/jsr.2012.60Google Scholar
Millot, G. (1970) Geology of Clays. Springer-Verlag.10.1007/978-3-662-41609-9Google Scholar
Millot, G. & Palausi, G. (1959) Sur un talc d’origine sedimentaire. Comptes Rendus Geologique Francais, 45–47.Google Scholar
Mitsuda, T. & Taguchi, H. (1977) Formation of magnesium-silicate hydrate and its crystallization to talc. Cement and Concrete Research, 7, 223–230.10.1016/0008-8846(77)90083-7Google Scholar
Noack, Y., Decarreau, A., Boudzoumou, F. & Trompette, R. (1989) Low-temperature oolitic talc in upper Proterozoic rocks, Congo. Journal of Sedimentary Research, 59, 717.Google Scholar
Packter, A. (1986) Precipitation of alkaline-earth metal silicate hydrates from aqueous solution: Ionic equilibria, crystalline phases and precipitation mMechanisms. Crystal Research and Technology, 21, 575–585.Google Scholar
Pavlova, A., Trinh, T.T., van Santen, R.A. & Meijer, E.J. (2012) Clarifying the role of sodium in the silica oligomerization reaction. Physical Chemistry Chemical Physics, 15, 1123–1129.Google Scholar
Pokrovsky, O.S. & Schott, J. (2004) Experimental study of brucite dissolution and precipitation in aqueous solutions: Surface speciation and chemical affinity control. Geochimica et Cosmochimica Acta, 68, 31–45.10.1016/S0016-7037(03)00238-2Google Scholar
Polyak, V.J. & Guven, N. (2000) Authigenesis of trioctahedral smectite in magnesium-rich carbonate speleothems in Carlsbad Cavern and other caves of the Guadalupe Mountains, New Mexico. Clays and Clay Minerals, 48, 317–321.10.1346/CCMN.2000.0480302Google Scholar
Pozo, M. & Casas, J. (1999) Origin of kerolite and associated M. clays in palustrine-lacustrine environments; the Esquivias Deposit (Neogene Madrid Basin, Spain). Clay Minerals, 34, 395–418.10.1180/000985599546316Google Scholar
Reynolds, R.C. Jr.,& Reynolds, R.C., III (1996) NEWMOD for Windows. The calculation of one dimensional X-ray diffraction patterns of mixedlayered clay minerals. Hanover, NH.Google Scholar
Rhouta, B., Kaddami, H., Elbarqy, J., Amjoud, M., Daoudi, L., Maury, F., Senocq, F., Maazous, A. & Gerard, J.F. (2008) Elucidating the crystal-chemistry of Jbel Rhassoul stevensite (Morocco) by advanced analytical techniques. Clay Minerals, 43, 393–403.10.1180/claymin.2008.043.3.05Google Scholar
Russell, J.D. & Fraser, A.R. (1994) Infrared methods. Pp. 11–67 in: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods (M.J. Wilson, editor). Chapman and Hall.Google Scholar
Russell, J.D., Farmer, V.C. & Velde, B. (1970) Replacement of O. by O. in layer silicates and identification of the vibrations of these groups in infrared spectra. Mineralogical Magazine, 37, 869–879.10.1180/minmag.1970.037.292.01Google Scholar
Shimoda, S. (1971) Mineralogical studies of a species of stevensite from the Obori mine, Yamagata Prefecture, Japan. Clay Minerals, 9, 185–192.10.1180/claymin.1971.009.2.04Google Scholar
Shirai, M., Aoki, K., Miura, T., Torii, K. & Arai, M. (2000) Control of pore structure of trioctahedral magnesium- smectite materials. Chemistry Letters, 29, 36–37.10.1246/cl.2000.36CrossRefGoogle Scholar
Shirai, M., Aoki, K., Torii, K. & Arai, M. (2002) Control of mesopore structure of smectite-type materials synthesized with a hydrothermal method. Studies in Surface Science and Catalysis, 141, 281–288.Google Scholar
Siffert, B. & Wey, R. (1962) Synthese d’une sepiolite a temperature ordinaire. Comptes Rendus de l’Academie des Sciences, 253, 142–145.Google Scholar
Slade, P.G., Quirk, J.P. & Norrish, K. (1991) Crystalline swelling of smectite samples in concentrated N.C. solutions in relation to layer charge. Clays and Clay Minerals, 39, 234–238.10.1346/CCMN.1991.0390302Google Scholar
Smykatz-Kloss, W. (1974) Differential Thermal Analysis: Applications and Results in Mineralogy. Springer-Verlag.Google Scholar
Smykatz-Kloss, W. (2002) Differential thermal analysis of Mg-bearing carbonates and sheet sili cates. Journal of Thermal Analysis and Calorimetry, 69, 85–92.10.1023/A:1019933622550Google Scholar
Stengele, F. & Smykatz-Kloss, W. (1998) Differential thermal study of Mg-bearing clays from saline lakes of Southern Tunisia. Journal of Thermal Analysis and Calorimetry, 51, 219–230.10.1007/BF02719023Google Scholar
Stoessell, R.K. (1988) 25°C and 1-atm dissolution experiments of sepiolite and kerolite. Geochimica et Cosmochimica Acta, 52, 365–374.10.1016/0016-7037(88)90092-0Google Scholar
Stoessell, R.K. & Hay, R.L. (1978) Geochemical origin of sepiolite and kerolite at Amboseli, Kenya. Contributions to Mineralogy and Petrology, 65, 255–267.10.1007/BF00375511Google Scholar
Strese, H. & Hofmann, U. (1941) Synthese von Magnesiumsilikat-Gelen mit zweidimensional regelmäbiger struktur. Zeitschrift für anorganische und allgemeine Chemie, 247, 65–95.10.1002/zaac.19412470107Google Scholar
Sudo, T. & Shimoda, S. (1970) Interstratified phyllosilicates. Pp. 539–552 in: Differential Thermal Analysis: Fundamental Aspects (R.C. Mackenzie, editor), 1.Google Scholar
Takahashi, N., Tanaka, M., Satoh, T. & Endo, T. (1994) Study of synthetic clay minerals. 3. Synthesis and characterization of 2-dimensional talc. Bulletin of the Chemical Society of Japan, 67, 2463–2467.10.1246/bcsj.67.2463Google Scholar
Takahashi, N., Tanaka, M., Satoh, T., Endo, T. & Shimada, M. (1997) Study of synthetic clay minerals. Part IV: synthesis of microcrystalline stevensite from hydromagnesite and sodium silicate. Microporous Materials, 9, 35–42.10.1016/S0927-6513(96)00084-3CrossRefGoogle Scholar
Tettenhorst, R. & Moore, J., G.E. (1978) Stevensite oolites from the Green River Formation of central Utah. Journal of Sedimentary Petrology, 48, 587–594.Google Scholar
Torii, K., Onodera, Y., Iwasaki, T., Shirai, M., Arai, M. & Nishiyama, Y. (1997) Hydrothermal synthesis of novel smectite-like mesoporous materials. Journal of Porous Materials, 4, 261–268.10.1023/A:1009673205831Google Scholar
Tosca, N.J., Macdonald, F.A., Strauss, J.V., Johnston, J.T. & Knoll, A.H. (2011) Sedimentary talc in Neoproterozoic carbonate successions. Earth and Planetary Science Letters, 306, 11–22.10.1016/j.epsl.2011.03.041Google Scholar
Trinh, T.T., Jansen A.P.J., van Santen, R.A., Vondele, J.V. & Meijer, E.J. (2009) Effect of counter ions on the silica oligomerization reaction. ChemPhysChem, 10, 1775–1782.10.1002/cphc.200900006Google Scholar
Velde, B. (1985) Clay Minerals: A Physico-Chemical Explanation of their Occurrence. Elsevier.Google Scholar
Weaver, C.E. & Beck, K.C. (1977) Miocene of the S. United States: a model for chemical sedimentation in a peri-marine environment. Sedimentary Geology, 17, 1–234.10.1016/0037-0738(77)90062-8Google Scholar
Webster, D.M. & Jones, B.F. (1994) Paleoenvironmental implications of lacustrine clay minerals from the Double Lakes Formation, southern High Plains, Texas. Pp. 159–172 in: Sedimentology and Geochemistry of Modern and Ancient Saline Lakes, SEPM Special Publication, 50.Google Scholar
Wilkins, R.W.T. & Ito, J. (1967) Infrared spectra of some synthetic talcs. American Mineralogist, 52, 1649–1661.Google Scholar
Williams, L.A., Parks, G.A. & Crerar, D.A. (1985) Silica diagenesis, I. Solubility controls. Journal of Sedimentary Petrology, 55, 301–311 Google Scholar
Wollast, R., Mackenzie, F.T. & Bricker, O.P. (1968) Experimental precipitation and genesis of sepiolite at earth-surface conditions. American Mineralogist, 53, 1645–1662.Google Scholar
Wright, V.P. (2012) Lacustrine carbonates in rift settings: the interaction of volcanic and microbial processes on carbonate deposition. Pp. 39–47 in: Advances in Carbonate Exploration and Reservoir Analysis (J. Garland, J. Nielson, S. Laubach, & K. Whidden, editors) Geological Society, London, Special Publications, 370.Google Scholar
Zhang, X.Q., Trinh, T.T., van Santen, R.A. & Jansen, A.P.J. (2011) Structure-directing role of counterions in the initial stage of zeolite synthesis. The Journal of Physical Chemistry C, 115, 9561–9567.Google Scholar