Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T21:54:21.408Z Has data issue: false hasContentIssue false

Aluminium activity in soil solution and mineral stability in soils from Galicia (NW Spain)

Published online by Cambridge University Press:  09 July 2018

R. Calvo
Affiliation:
Departamento de Edafología, Facultad de Biología, Universidad de Santiago, Spain
E. Alvarez
Affiliation:
Departamento de Edafología, Facultad de Biología, Universidad de Santiago, Spain

Abstract

Solutions obtained from soils in the Galicia Region of NW Spain had considerably lower activities of Al3+ when obtained by a speciation procedure (fractionation with an ionic column and application of specific software) than when obtained from concentrations of reactive Al (colorimetry with pyrocatechol violet) by a calculation that only considers simple hydroxylated species. Using the speciation method, many of the solutions obtained from surface horizons are unsaturated for most minerals, especially in granitic areas.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, F. (1974) Soil solution. Pp. 441481 in: The Plant Root and its Environment(Carson, E. W., editor). Univ. of Virginia Press, Charlottesville.Google Scholar
Alvarez, E. & Calvo, R. (1991a) La especiacion de Al en solucion de suelos de Galicia. Suelo y Planta(in press).Google Scholar
Alvarez, E. & Calvo, R. (1991b) Geochemical aspects of Al in forest soils from Galicia (NW Spain). Biogeochemistry(in press).CrossRefGoogle Scholar
Calvo, R., Fernandez, M.L. & Veiga, A. (1987) Composicion de la solucion del suelo en medios naturales de Galicia. An. Edaf. Agrobiol., 46, 621–641.Google Scholar
Calvo, R., Paz, A. & Diaz-Fierros, F. (1979) Nuevos datos sobre la influencia de la vegetacion en la formacion del suelo en GaJicia. III. Aportes por hojarasca, perdidas por drenaje y escorrentia. An. Edaf. Agrobiol., 38, 1983–2000.Google Scholar
Dougan, W.K. & Wilson, A.L. (1974) The absorptiometric determination of aluminium in water. A comparison of some chromogenic reagents and development of an improved method. Analyst,, 99, 413–430.CrossRefGoogle Scholar
Driscoll, C.T. (1984) A procedure for the fractionation of aqueous aluminium in dilute acidic waters. Int. J. Environ. Anal. Chem., 16, 267–283.CrossRefGoogle Scholar
Farmer, V.C.& Fraser, A.R. (1982) Chemical and colloidal stability of soils in the Al2O3-Fe2O3-SiO2-H2O system: Their role in podzolisation. J. Soil Sci., 33, 737–742.CrossRefGoogle Scholar
Fritz, B. & Tardy, Y. (1973) Etude thermodynamique du systeme gibbsite, quartz, kaolinite, gaz carbonique. Application a la genese des podzols et des bauxites. Sci. Geol. Bull., 26, 339–367.Google Scholar
Garcia-Rodeja, E. & Macias, F. (1984) Caracterizacion de suelos acidos (Podzoles, Andosoles- Suelos aluminitxjs) de Galicia. Relacion con los procesos edafogeoqufmicos. Actas 1- Congr. Nac. Cienc. del Suelo, Madrid,, 589602.Google Scholar
Garrels, R.M. & Christ, C.C. (1965) Solutions, Minerals and Equilibria. Harper & Row, New York.Google Scholar
Griffin, P. & Jurinak, A. (1973) Estimation of activity coefficients from the electrical conductivity of natural aquatic systems and soils extracts. Soil Sci., 116, 20–30.CrossRefGoogle Scholar
Guitian, F. & Coladas, V. (1974) Inhibicion de la sfntesis de la caolinita por diversos extractos acuosos de restos vegetales. An. Edafol. Agrobiol., 33, 979–989.Google Scholar
Helgeson, H.C. (1971) Kinetic of mass transfer among silicates and aqueous solutions. Geochim. Cosmochim. Acta,, 35, 421469.CrossRefGoogle Scholar
Hem, J.D. & Roberson, C.E. (1967) Form and stability of aluminium hydroxide complexes in dilute solutions. U.S. Geol. Surv. Water Suppl. Pap., 1827-A.Google Scholar
Kharaka, Y., Gunter, W., Aggarwal, P., Perkins H, & DeBraal, J. (1989) Soimineq.88: A Computer Program for Geochemical Modelling of Water-Rock Interactions.US Geological Survey, Menlo Park, California.Google Scholar
Lindsay, W.L. (1979) Chemical Equilibria in Soils. John Wiley & Sons, New York.Google Scholar
Macias, F., Calvo, R., Garcia, C., Garcia-Rodeja, E. & Silva, B. (1982) El material original: su formacion e influencia en las propiedades de los suelos de Galicia. An. Edafol. Agrobiol., 41, 1747–1768.Google Scholar
Macias, F., Fernandez, M.L. & Chesworth, W. (1986) Transformations mineralogiques dans les podzols et sols podzoliques de la Galice (NW Espagne). Pp. 163-177 in: Podzols et Podzolisation.(D. Righi & A. Chauvel, editors). INRA, France.Google Scholar
Robie, R.A., Hemingway, B.S. & Fisher, J.R. (1978) Thermodynamic properties of minerals and related substances at 298-15 K and 1 bar. U.S. Geol. Surv. Bull., 1452, 456pp.Google Scholar
Romero, R., Taboada, T.M. & Garcia, C. (1990) Formas de minerales caoliniticos en suelos granfticos de Galicia. XWII Reunion Nacional de Suelos, Badajoz. Google Scholar
Sposito, G. (1981) The Thermodynamics of Soil Solutions. Oxford. Sci. Publ., Oxford.Google Scholar
Stumm, W. & Morgan, J.J. (1981) Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibrium in Natural Waters. J. Wiley, New York.Google Scholar
USDA (1975) Soil Taxonomy. U.S. Department of Agriculture.Google Scholar