Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T23:35:20.728Z Has data issue: false hasContentIssue false

Smectitic clays enriched with ferric ions for the rapid removal of anionic dyes in aqueous media

Published online by Cambridge University Press:  10 February 2020

Itamar A. Rodrigues
Affiliation:
Universidade Estadual do Centro-Oeste, Departamento de Química, Laboratório de Materiais e Compostos Inorgânicos, Rua Simeão Varela de Sá, 03, CEP 85040-080, Guarapuava, PR, Brazil
Juan C. Villalba
Affiliation:
Universidade Estadual do Centro-Oeste, Departamento de Química, Laboratório de Materiais e Compostos Inorgânicos, Rua Simeão Varela de Sá, 03, CEP 85040-080, Guarapuava, PR, Brazil
Maria J. Santos
Affiliation:
Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Cx. Postal 10.011, CEP 86057-970, Londrina, PR, Brazil
Fábio L. Melquiades
Affiliation:
Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Pr 445 Km 380, Cx. Postal 10.011, CEP 86057-970, Londrina, PR, Brazil
Fauze J. Anaissi*
Affiliation:
Universidade Estadual do Centro-Oeste, Departamento de Química, Laboratório de Materiais e Compostos Inorgânicos, Rua Simeão Varela de Sá, 03, CEP 85040-080, Guarapuava, PR, Brazil

Abstract

Sodium smectite clays were enriched with ferric ions (Argel-Fe and Volclay-Fe) to convert the surface charge of the clays from negative to positive and to use the clays in the discolouration of a synthetic effluent composed of seven anionic dyes (mixed from tartrazine, Brilliant Blue FCF and amaranth). The iron content increased from 5.99% to 11.02% for Argel-Fe and from 5.39% to 10.54% for Volclay-Fe. The efficiency of the discolouration of the anion dye mixture was evaluated by measuring the absorbance of the mixture at 562 nm, where the band with the greatest intensity was found. The contact time required for the system to reach equilibrium was ~5 min for both adsorbents. The kinetic adsorption data supported a pseudo-second-order kinetic model. The experimental data support the dual-site Langmuir–Freundlich isotherm model. The maximum adsorption capacities were 88.68 mg g–1 for Argel-Fe and 392.21 mg g–1 for Volclay-Fe. The enrichment of clays with Fe(III) added functionality to the clays and generated adsorbents with rapid adsorption abilities and high discolouration capacities.

Type
Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Chun-Hui Zhou

References

Aksu, Z. (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 40, 9971026.CrossRefGoogle Scholar
Al-Duri, B. & McKay, G. (2007) Pore diffusion: dependence of the effective diffusivity on the initial sorbate concentration in single and multisolute batch adsorption systems. Journal of Chemical Technology & Biotechnology, 55(3), 245250.CrossRefGoogle Scholar
Aljeboree, A.M., Alshirifi, A.N. & Alkaim, A.F. (2017) Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian Journal of Chemistry, 10, 33813393.CrossRefGoogle Scholar
Anvari, F., Kheirkhah, M. & Amraei, R. (2014) Treatment of synthetic textile wastewater by combination of coagulation/flocculation process and electron beam irradiation. Journal of Community Health Research, 3(1), 3138.Google Scholar
Banerjee, S. & Chattopadhyaya, M.C. (2017) Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arabian Journal of Chemistry, 10, S1629S1638.CrossRefGoogle Scholar
Banković, P., Milutinović-Nikolić, A., Mojović, Z., Jović-Jovičić, N., Žunić, M., Dondur, V. & Jovanović, D. (2012) Al,Fe-pillared clays in catalytic decolorization of aqueous tartrazine solutions. Applied Clay Science, 58, 7378.CrossRefGoogle Scholar
Barton, C.D. & Karathanasis, A.D. (2002) Clay minerals. Pp. 187–192 in Encyclopedia of Soil Science. Springer, Dordrecht, The Netherlands.Google Scholar
Baskaralingam, P., Pulikesi, M., Elango, D., Ramamurthi, V.& Sivanesan, S.( 2006 ) Adsorption of acid dye onto organobentonite. Journal of Hazardous Materials, 128(2–3), 138144.CrossRefGoogle ScholarPubMed
Borgnino, L., Avena, M.J. & De Pauli, C.P. (2009) Synthesis and characterization of Fe(III)-montmorillonites for phosphate adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 341, 4652.CrossRefGoogle Scholar
Chen, G., Han, B. & Yan, H. (1998) Interaction of cationic surfactants with iron and sodium montmorillonite suspensions. Journal of Colloid and Interface Science, 201, 158163.CrossRefGoogle Scholar
Dramé, H. (2005) Cation exchange and pillaring of smectites by aqueous Fe nitrate solutions. Clays and Clay Minerals, 53(4), 335347.CrossRefGoogle Scholar
Duarte-Neto, J.F., Cartaxo, J.M., Neves, G.A. & Menezes, R.R. (2014) Processos de adsorção de corantes em argilas esmectíticas: uma revisão. Revista Eletrônica de Materiais e Processos, 9(1), 5159.Google Scholar
Fegousse, A., Gaidoumi, A.E., Miyah, Y., Mountassir, R.E. & Lahrichi, A. (2019) Pineapple bark performance in dyes adsorption: optimization by the central composite design. Journal of Chemistry, 2019, 3017163.CrossRefGoogle Scholar
Fungaro, D.A. & Izidoro, J.C. (2006) Remediação de drenagem ácida de mina usando zeólitas sintetizadas a partir de cinzas leves de carvão. Química Nova, 29(4), 735740.CrossRefGoogle Scholar
Giles, C.H., Smith, D. & Huitson, A. (1974) A general treatment and classification of the solute adsorption isotherm. I. Theoretical. Journal of Colloid and Interface Science, 47(3), 755765.CrossRefGoogle Scholar
Grygar, T., Hradil, D., Bezdicka, P.B., Dousova, B., Capek, L. & Schneeweiss, O. (2007) Fe(III)-modified montmorillonite and bentonite: synthesis, chemical and UV–Vis spectral characterization, arsenic sorption, and catalysis of oxidative dehydrogenation of propane. Clays and Clay Minerals, 55(2), 165176.CrossRefGoogle Scholar
Guilarduci, V.V.S., Mesquita, J.P., Martelli, P.B. & Gorgulho, H.F. (2006) Adsorção de fenol sobre carvão ativado em meio alcalino. Química Nova, 29(6), 12261232.CrossRefGoogle Scholar
Hernández-Hernández, K.A., Solache-Ríos, M. & Díaz-Nava, M.C. (2013) Removal of Brilliant Blue FCF from aqueous solutions using an unmodified and iron-modified bentonite and the thermodynamic parameters of the process. Water, Air, and Soil Pollution, 224, 1562.CrossRefGoogle Scholar
Huang, P., Kazlauciunas, A., Menzel, R. & Lin, L. (2017) Determining the mechanism and efficiency of industrial dye adsorption through facile structural control of organo-montmorillonite adsorbents. ACS Applied Materials & Interfaces, 9(31), 2638326391.CrossRefGoogle ScholarPubMed
Kang, Q., Zhou, W., Li, Q., Gao, B., Fan, J. & Shen, D. (2009) Adsorption of anionic dyes on poly(epicholorohydrin dimethylamine) modified bentonite in single and mixed dye solutions. Applied Clay Science, 45(4), 280287.CrossRefGoogle Scholar
Karataş, D., Senol-Arslan, D. & Ozdemir, O. (2018) Experimental and atomistic modeling of adsorption of azo acid 57 on sepiolite. Clays and Clay Minerals, 66(5), 426437.Google Scholar
Khlifi, R., Belbahri, L., Woodward, S., Ellouz, M., Dhouib, A., Sayadi, S. & Mechichi, T. (2010) Decolourization and detoxification of textile industry wastewater by the laccase-mediator system. Journal of Hazardous Materials, 175(1–3), 802808.CrossRefGoogle ScholarPubMed
Kosmulski, M. (2016) Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks’ review. Advances in Colloid and Interface Science, 238, 161.CrossRefGoogle Scholar
Kunz, A., Zamora, P.P., Moraes, S.G. & Durán, N. (2002) Novas tendências no tratamento de efluentes têxteis. Química Nova, 25(1), 7882.CrossRefGoogle Scholar
Kyzioł-Komosińska, J., Rosik-Dulewska, C., Dzieniszewska, A., Pająk, M. & Krzyżewska, I. (2014) Removal of Cr(III) ions from water and wastewater by sorption onto peats and clays occurring in an overburden of lignite beds in central Poland. Environment Protection Engineering, 40(1), 522.CrossRefGoogle Scholar
Leite, S.Q.M., Dieguez, L.C., San Gil, R.A.S. & Menezes, S.M.C. (2000) Pilarização de esmectita brasileira para fins catalíticos. Emprego de argila pilarizada na alquilação de benzeno com 1-dodeceno. Química Nova, 23(2), 149154.CrossRefGoogle Scholar
Luengo, C., Puccia, V. & Avena, M. (2011) Arsenate adsorption and desorption kinetics on a Fe(III)-modified montmorillonite. Journal of Hazardous Materials, 186, 17131719.CrossRefGoogle ScholarPubMed
Mariani, F.Q., Villalba, J.C. & Anaissi, F.J. (2013) Caracterização estrutural de argilas utilizando DRX com luz síncrotron, MEV, FTIR e TG-DTG-DTA. Orbital: Electronic Journal of Chemistry, 5(4), 249256.Google Scholar
McBride, M.B. (1994) Environmental Chemistry of Soils. Oxford University Press, Oxford, UK, 406 pp.Google Scholar
McLaren, K. (1976) The development of the CIE 1976 (L* a* b*) uniform colour space and colour-difference formula. Journal of the Society of Dyers and Colourists, 92, 338341.CrossRefGoogle Scholar
Mekhamer, W.K. (2010) The colloidal stability of raw bentonite deformed mechanically by ultrasound. Journal of Saudi Chemical Society, 14, 301306.CrossRefGoogle Scholar
Melo, V.F. & Alleoni, L.R.F. (2009) Química e Mineralogia do Solo, Parte II – Aplicações, 1st edition. Sociedade Brasileira de Ciência do Solo, Viçosa, Brazil, xxx pp.Google Scholar
Moreira, S., Milagres, A.M.F. & Mussatto, S.I. (2014) Reactive dyes and textile effluent decolorization by a mediator system of salt-tolerant laccase from Peniophora cinerea. Separation and Purification Technology, 135, 183189.CrossRefGoogle Scholar
Noroozi, B. & Sorial, G.A. (2013) Applicable models for multi-component adsorption of dyes: a review. Journal of Environmental Sciences, 25(3), 419429.CrossRefGoogle ScholarPubMed
Odom, I.E. (1984) Smectite clay minerals: properties and uses. Philosophical Transactions of the Royal Society of London, 311, 391409.Google Scholar
Olivares, N.C., Díaz-Nava, M.C. & Solache-Ríos, M. (2016) Enhanced decolorization of dyes by an iron modified clay and thermodynamic parameters. Water Science & Technology, 73(8), 20072016.CrossRefGoogle Scholar
Ortega, F.S., Pandolfelli, V.C., Rodrigues, J.A. & Souza, D.P.F. (1997) Artigo revisão: aspectos da reologia e da estabilidade de suspensões cerâmicas. Parte III: mecanismo de estabilização eletroestérica de suspensões com alumina. Cerâmica, 43, 281282.CrossRefGoogle Scholar
Ozcan, A.S., Erdem, B. & Ozcan, A. (2004) Adsorption of acid blue 193 from aqueous solutions onto Na-bentonite and DTMA-bentonite. Journal of Colloid and Interface Science, 280, 4454.CrossRefGoogle ScholarPubMed
Ozcan, A.S., Erdem, B. & Ozcan, A. (2005) Adsorption of acid blue 193 from aqueous solutions onto BTMA-bentonite. Colloid and Surfaces A: Physicochemical and Engineering Aspects, 266, 7381.CrossRefGoogle Scholar
Paiva, L.B., Morales, A.R. & Díaz, F.R.V. (2008) Argilas organofílicas: características, metodologias de preparação, compostos de intercalação e técnicas de caracterização, Cerâmica, 54, 213226.CrossRefGoogle Scholar
Pecini, E.M. & Avena, M.J. (2013) Measuring the isoelectric point of the edges of clay mineral particles: the case of montmorillonite. Langmuir, 29(48), 1492614934.CrossRefGoogle ScholarPubMed
Quan, G., Kong, L., Lan, Y., Yan, J. & Gao, B. (2018) Removal of acid orange 7 by surfactant-modified iron nanoparticle supported on palygorskite: reactivity and mechanism. Applied Clay Science, 152, 173182.CrossRefGoogle Scholar
Quindici, M. (2013) O Segredo das Cores. All Print Editora, São Paulo, Brazil.Google Scholar
Roulia, M. & Vassiliadis, A.A. (2008) Sorption characterization of a cationic dye retained by clays and perlite. Microporous and Mesoporous Materials, 116, 732740.CrossRefGoogle Scholar
Sahnoun, S. & Boutahala, M. (2018) Adsorption removal of tartrazine by chitosan/polyaniline composite: kinetics and equilibrium studies. International Journal of Biological Macromolecules, 114, 13451353.CrossRefGoogle ScholarPubMed
Santos, C.P.F., Melo, D.M.A., Melo, M.A.F. & Sobrinho, E.V. (2002) Caracterização e usos de argilas bentonitas e vermiculitas para adsorção de cobre (II) em solução. Cerâmica, 48, 308.CrossRefGoogle Scholar
Shen, D., Fan, J., Zhou, W., Gao, B., Yue, Q. & Kang, Q. (2009) Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems. Journal of Hazardous Materials, 172, 99107.CrossRefGoogle ScholarPubMed
Sze, A., Erickson, D., Ren, L. & Li, D. (2003) Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. Journal of Colloid and Interface Science, 261, 402410.CrossRefGoogle ScholarPubMed
Takashima, K., Takata, N.H. & Nakamura, W.M. (1988) Separação e identificação de corantes sintéticos para fins alimentícios solúveis em água. Semina, 9(4), 171174.Google Scholar
Tireli, A.A., Marcos, F.C.F., Oliveira, L.F., Guimarães, I.R., Guerreiro, M.C. & Silva, J.P. (2014) Influence of magnetic field on the adsorption of organic compound by clays modified with iron. Applied Clay Science, 97, 17.CrossRefGoogle Scholar
Turabik, M. (2008) Adsorption of basic dyes from single and binary component systems onto bentonite: simultaneous analysis of Basic Red 46 and Basic Yellow 28 by first order derivative spectrophotometric analysis method. Journal of Hazardous Materials, 158, 5264.CrossRefGoogle ScholarPubMed
Umpleby, R.J., Baxter, S.C., Chen, Y., Shah, R.N. & Shimizu, K.D. (2001) Characterization of molecularly imprinted polymers with the Langmuir–Freundlich isotherm. Analytical Chemistry, 73(19), 45844591.CrossRefGoogle ScholarPubMed
Yang, R., Li, D., Li, A. & Yang, H. (2018) Adsorption properties and mechanisms of palygorskite for removal of various ionic dyes from water. Applied Clay Science, 151, 2028.CrossRefGoogle Scholar
Yukselen, Y. & Kaya, A. (2003) Zeta potential of kaolinite in the presence of alkali, alkaline earth and hydrolyzable metal ions. Water, Air, and Soil Pollution, 145, 155168.CrossRefGoogle Scholar
Zollinger, H. (2003) Color Chemistry Synthesis, Properties and Applications of Organic Dyes and Pigments, 3rd edition. Wiley-VCH, Hoboken, NJ, USA, 647 pp.Google Scholar
Supplementary material: File

Rodrigues et al. supplementary material

Rodrigues et al. supplementary material

Download Rodrigues et al. supplementary material(File)
File 121.3 MB