Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T21:18:00.975Z Has data issue: false hasContentIssue false

Retrograde diagenesis, a widespread process on a regional scale

Published online by Cambridge University Press:  09 July 2018

F. Nieto*
Affiliation:
Instituto Andaluz de Ciencias de la Tierra and Departamento de Mineralogía y Petrología, University of Granada-CSIC, 18002 Granada, Spain
M. Pilar Mata
Affiliation:
Departamento de Geología, University of Cádiz, Campus Río San Pedro, 11510 Puerto Real, Cádiz, Spain
B. Bauluz
Affiliation:
Departamento de Ciencias de la Tierra, University of Zaragoza, 50009 Zaragoza, Spain
G. Giorgetti
Affiliation:
Dipartimento di Science della Terra, University of Siena, Siena, Italy
P. Árkai
Affiliation:
Laboratory for Geochemical Research, Hungarian Academy of Sciences, H-1112 Budapest, Budaörsi út 45, Hungary
D. R. Peacor
Affiliation:
Department of Geological Sciences, The University of Michigan. Ann Arbor, MI-48109, US

Abstract

Pelitic and basic rocks occurring within prograde sequences in Portugal, Spain and Hungary have been studied by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The minerals formed in typical prograde reactions define the general sequences, but smectite, chlorite-smectite (corrensite) and/or berthierine were found to have replaced chlorite, whereas kaolinite and mixed-layer illite-smectite replaced illite-muscovite. Alteration occurred under conditions normally associated with diagenesis, subsequent to regional metamorphism, and we therefore refer to such processes with the term “retrograde diagenesis”. In the cases studied and in other cited examples, reactions occurred on a regional basis via pervasive fluids under open-system conditions inferred to be related to tectonic stress. The observed alterations could generally not be inferred from XRD data, although the presence of pure smectite in sediments other than bentonite is suggestive of retrograde relations, especially where other minerals are consistent with a higher grade of diagenesis. Retrograde diagenesis is readily observed through imaging of textures by TEM, however. Textural features show that retrograde reactions are more common than generally assumed, and that care should be used in interpreting geological events where appropriate textural relations are not seen.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abad, I., Mata, M.P., Nieto, F. & Velilla, N. (2001) The phyllosilicates in diagenetic-metamorphic rocks of the South Portuguese Zone, Southwestern Portugal. The Canadian Mineralogist, 39, 15711589.CrossRefGoogle Scholar
Abad, I., Nieto, F. & Velilla, N. (2002) Chemical and textural characterisation of diagenetic to low-grade metamorphic phyllosilicates in turbidite sandstones of the South Portuguese Zone: A comparison between metapelites and sandstones. Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 303–324.Google Scholar
Árkai, P. (1983) Very low- and low-grade Alpine regional metamorphism of the Paleozoic and Mesozoic formations of the Bükkium, NE Hungary. Acta Geologica Hungarica, 26, 83101.Google Scholar
Árkai, P. (1991) Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Palaeozoic and Mesozoic rocks of Northeast Hungary. Journal of Metamorphic Geology, 9, 723734.CrossRefGoogle Scholar
Árkai, P. & Sadek Ghabrial, D. (1997) Chlorite crystallinity as an indicator of metamorphic grade of lowtemperature meta-igneous rocks: a case study from the Bükk Mountains, Northeast Hungary. Clay Minerals, 32, 205222.CrossRefGoogle Scholar
Árkai, P., Horvath, Z.A. & Toth, M. (1981) Transitional very low- and low-grade regional metamorphism of the Paleozoic formations, Uppony Mountains, NEHungary: mineral assemblages, illite-crystallinity, -bo and vitrinite reflectance data. Acta Geologica Academiae Scientarum Hungaricae, 24, 265–294.Google Scholar
Árkai, P., Balogh, K. & Dunkl, I. (1995) Timing of lowtemperature metamorphism and cooling of the Paleozoic and Mesozoic formations of the Bükkium, innermost Western Carpathians, Hungary. Geologische Rundschau, 84, 334–344.CrossRefGoogle Scholar
Árkai, P., Mata, M.P., Giorgetti, G., Peacor, D.R. & Toth, M. (2000) Comparison of diagenetic and low-grade metamorphic evolution of chlorite in associated metapelites and metabasites: an integrated TEM and XRD study. Journal of Metamorphic Geology, 18, 531550.CrossRefGoogle Scholar
Aróstegui, J., Zuluaga, M.C., Velasco, F., Ortega-Huertas, M. & Nieto, F. (1991) Diagenesis of the Central Basque-Cantabrian basin (Iberian Peninsula) based on illite-smectite distribution. Clay Minerals, 26, 535548.CrossRefGoogle Scholar
Aróstegui, J., Nieto, F., Ortega-Huertas, M., Velasco, F. & Zuluaga, M.C. (1993) Mineralogía de arcillas y grado de diagénesis del Cretácico inferior, en el flanco sur del anticlinorio de Bilbao. Estudios Geológicos, 49, 277286.CrossRefGoogle Scholar
Bauluz, B. (1997) Caracterización mineralógica y geoquímica de materiales detríticos precámbricos y paleozoicos de las Cadenas Ibéricas: Evolutión post-sedimentaria. PhD thesis, University of Zaragoza, Spain, 341 pp.Google Scholar
Bauluz, B., Mayayo, M.J., Fernández-Nieto, C. & González López, J.M. (1995) Mineralogy and geochemistry of Devonian detrital rocks from the Iberian Range (Spain). Clay Minerals, 30, 381394.CrossRefGoogle Scholar
Bauluz, B., Mayayo, M.J. & González López, J.M. (1998) Diagenesis-very low-grade metamorphism of clastic Cambrian and Ordovician sedimentary rocks in the Iberian Range (Spain). Clay Minerals, 33, 373394.CrossRefGoogle Scholar
Bauluz, B., Peacor, D. & González López, J.M. (2000) Transmission electron microscopy study of illitization in pelites from the Iberian Range, Spain: layerby- layer replacement. Clays and Clay Minerals, 3, 374384.CrossRefGoogle Scholar
Bethke, C.M. & Marshak, S. (1990) Brine migrations across North America — the plate tectonics of groundwater. Annual Review of Earth and Planetary Sciences, 18, 287315.CrossRefGoogle Scholar
Do Campo, M. (1999) Metamorfismo del basamento en la Cordillera Oriental y borde oriental de la Puna. Pp. 41–51 in: Relatorio XIV Congreso Geologico Argentino Geologia del Noroeste Argentino (González Bonorino, G., Omarini, R. & Viramonte, J., editors). Universidad de Salta, Argentina.Google Scholar
Do Campo, M. & Nieto, F. (2003) Transmission electron microscopy study of very low-grade metamorphic evolution in Neoproterozoic pelites of the Puncoviscana formation (Cordillera Oriental, NW Argentina). Clay Minerals, 38, 459481.CrossRefGoogle Scholar
Downes, H., Pantó, Gy., Árkai, P. & Thirlwall, M.F. (1990) Petrology and geochemistry of Mesozoic igneous rocks, Biikk Mountains, Hungary. Lithos, 24, 201-215.CrossRefGoogle Scholar
Jiang, W.T., Peacor, D.R., Merriman, R.J. & Roberts, B. (1990a) Transmission and analytical electron microscopic study of mixed-layer illite/smectite formed as an apparent replacement product of diagenetic illite. Clays and Clay minerals, 38, 449468.CrossRefGoogle Scholar
Jiang, W.T., Essene, E.J. & Peacor, D.R. (1990b) Transmission electron microscopic study of coexisting pyrophyllite and muscovite: direct evidence for metastability of illite. Clays and Clay Minerals, 38, 225240.CrossRefGoogle Scholar
Jiang, W.T., Peacor, D.R. & Slack, J.F. (1992) Microstructures, mixed layering, and polymorphism of chlorite and retrograde berthierine in the Kidd Creek massive sulphide deposit, Ontario. Clays and Clay Minerals, 40, 501514.CrossRefGoogle Scholar
Katz, B., Elmore, R.D., Engel, M.H., Cogoini, M. & Ferry, S. (2000) Associations between burial diagenesis of smectite, chemical remagnetization and magnetite authigenesis in the Vocontian Trough of SE France. Journal of Geophysical Research, 105, 851-868.CrossRefGoogle Scholar
Mata, M.P., Giogetti, G., Árkai, P. & Peacor, D.R. (2001) Comparison of evolution of trioctahedral chlorite/berthierine/smectite in coeval metabasites and metapelites from diagenetic to epizonal grades. Clays and Clay Minerals, 49, 318332.CrossRefGoogle Scholar
Mellini, M., Nieto, F., Álvarez, F. & Gomez-Pugnaire, M.T. (1991) Mica-chlorite intermixing and altered chlorite from the Nevado-Filabride micaschists, Southern Spain. European Journal of Mineralogy, 3, 2738.CrossRefGoogle Scholar
Merriman, R.J. & Peacor, D.R. (1999) Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. Pp. 10-60 in: Low-grade Metamorphism (Frey, M. & D. Robinson, editors). Blackwell Science, Oxford, UK.Google Scholar
Miller, J.D. & Kent, D.V. (1988) Regional trends in the timing of Alleghanian remagnetizations in the Appalachians. Geology, 16, 588–591.Google Scholar
Munha, J. (1983) Low-Grade Regional Metamorphism in the Iberian Pyrite Belt. Comunicações dos Serviços Geologicos de Portugal, 69, 3–35.Google Scholar
Nieto, F. & Peacor, D.R. (1993) Regional retrograde alteration of prograde lower grade hydrated assemblages. Terra Abstracts, 419.Google Scholar
Nieto, F., Velilla, N., Peacor, D.R. & Ortega-Huertas, M. (1994) Regional retrograde alteration of sub-greenschist facies chlorite to smectite. Contributions to Mineralogy and Petrology, 115, 243-252.CrossRefGoogle Scholar
Nieto, F., Ortega-Huertas, M., Peacor, D.R. & Aróstegui, J. (1996) Evolution of illite/smectite from early diagenesis through incipient metamorphism in sediments of the Basque-Cantabrian basin. Clays and Clay Minerals, 44, 304323.CrossRefGoogle Scholar
Oliver, J. (1986) Fluids expelled tectonically from orogenic belts; their role in hydrocarbon migration and other geologic phenomena. Geology, 14, 99102.2.0.CO;2>CrossRefGoogle Scholar
Polgari, M. & Forizs, I. (1996) Distribution of Mn in carbonates from the Uppony Mts., NE-Hungary. Geologica Carpathica, 47, 215225.Google Scholar
Stixrude, L. & Peacor, D.R. (2002) First-principles study of illite-smectite and implications for clay mineral systems. Nature, 420, 165-168.CrossRefGoogle ScholarPubMed
Tournier, B., Liewig, N., Edel., J.B. & Montigny, R. (1999) Concordance d'âges de ráaimantations: exemple des grès triasiques d'Alsace. Comptes Rendus de I'Academie des Sciences, Paris, 329, 7-13.Google Scholar
Zhao, G., Peacor, D.R. & McDowell, D.S. (1999) Retrograde diagenesis of clay minerals in the Precambrian Freda sandstone, Wisconsin. Clays and Clay Minerals, 47, 119-130.Google Scholar